Description
Flexible Dictionary-Based Cleaning.
Description
Provides flexible dictionary-based cleaning that allows users to specify implicit and explicit missing data, regular expressions for both data and columns, and global matches, while respecting ordering of factors. This package is part of the 'RECON' (<https://www.repidemicsconsortium.org/>) toolkit for outbreak analysis.
README.md
matchmaker R package
The goal of {matchmaker} is to provide dictionary-based cleaning for R users in a simple and intuitive manner built on the {forcats} package. Some of the features of this package include:
- preservation of factor orders
- ability to specify explicit and implicit missing values
- option to replace by fuzzy matching (regular expressions, anchored by default)
- optional variable selection by fuzzy matching
Installation
You can install {matchmaker} from CRAN:
install.packages("matchmaker")
Example
The matchmaker package has two user-facing functions that perform dictionary-based cleaning:
match_vec()
will translate the values in a single vectormatch_df()
will translate values in all specified columns of a data frame
Each of these functions have four manditory options:
x
: your data. This will be a vector or data frame depending on the function.dictionary
: This is a data frame with at least two columns specifying keys and values to modifyfrom
: a character or number specifying which column contains the keysto
: a character or number specifying which column contains the values
Mostly, users will be working with match_df()
to transform values across specific columns. A typical workflow would be to:
- construct your dictionary in a spreadsheet program based on your data
- read in your data and dictionary to data frames in R
- match!
library("matchmaker")
# Read in data set
dat <- read.csv(matchmaker_example("coded-data.csv"),
stringsAsFactors = FALSE
)
dat$date <- as.Date(dat$date)
# Read in dictionary
dict <- read.csv(matchmaker_example("spelling-dictionary.csv"),
stringsAsFactors = FALSE
)
Data
This is the top of our data set, generated for example purposes
id | date | readmission | treated | facility | age_group | lab_result_01 | lab_result_02 | lab_result_03 | has_symptoms | followup |
---|---|---|---|---|---|---|---|---|---|---|
ef267c | 2019-07-08 | NA | 0 | C | 10 | unk | high | inc | NA | u |
e80a37 | 2019-07-07 | y | 0 | 3 | 10 | inc | unk | norm | y | oui |
b72883 | 2019-07-07 | y | 1 | 8 | 30 | inc | norm | inc | oui | |
c9ee86 | 2019-07-09 | n | 1 | 4 | 40 | inc | inc | unk | y | oui |
40bc7a | 2019-07-12 | n | 1 | 6 | 0 | norm | unk | norm | NA | n |
46566e | 2019-07-14 | y | NA | B | 50 | unk | unk | inc | NA | NA |
Dictionary
The dictionary looks like this:
options | values | grp | orders |
---|---|---|---|
y | Yes | readmission | 1 |
n | No | readmission | 2 |
u | Unknown | readmission | 3 |
.missing | Missing | readmission | 4 |
0 | Yes | treated | 1 |
1 | No | treated | 2 |
.missing | Missing | treated | 3 |
1 | Facility 1 | facility | 1 |
2 | Facility 2 | facility | 2 |
3 | Facility 3 | facility | 3 |
4 | Facility 4 | facility | 4 |
5 | Facility 5 | facility | 5 |
6 | Facility 6 | facility | 6 |
7 | Facility 7 | facility | 7 |
8 | Facility 8 | facility | 8 |
9 | Facility 9 | facility | 9 |
10 | Facility 10 | facility | 10 |
.default | Unknown | facility | 11 |
0 | 0-9 | age_group | 1 |
10 | 10-19 | age_group | 2 |
20 | 20-29 | age_group | 3 |
30 | 30-39 | age_group | 4 |
40 | 40-49 | age_group | 5 |
50 | 50+ | age_group | 6 |
high | High | .regex ^lab_result_ | 1 |
norm | Normal | .regex ^lab_result_ | 2 |
inc | Inconclusive | .regex ^lab_result_ | 3 |
y | yes | .global | Inf |
n | no | .global | Inf |
u | unknown | .global | Inf |
unk | unknown | .global | Inf |
oui | yes | .global | Inf |
.missing | missing | .global | Inf |
Matching
# Clean spelling based on dictionary -----------------------------
cleaned <- match_df(dat,
dictionary = dict,
from = "options",
to = "values",
by = "grp"
)
head(cleaned)
#> id date readmission treated facility age_group
#> 1 ef267c 2019-07-08 Missing Yes Unknown 10-19
#> 2 e80a37 2019-07-07 Yes Yes Facility 3 10-19
#> 3 b72883 2019-07-07 Yes No Facility 8 30-39
#> 4 c9ee86 2019-07-09 No No Facility 4 40-49
#> 5 40bc7a 2019-07-12 No No Facility 6 0-9
#> 6 46566e 2019-07-14 Yes Missing Unknown 50+
#> lab_result_01 lab_result_02 lab_result_03 has_symptoms followup
#> 1 unknown High Inconclusive missing unknown
#> 2 Inconclusive unknown Normal yes yes
#> 3 Inconclusive Normal Inconclusive missing yes
#> 4 Inconclusive Inconclusive unknown yes yes
#> 5 Normal unknown Normal missing no
#> 6 unknown unknown Inconclusive missing missing