MyNixOS website logo
Description

Datasets and Functions for Reproducing Meta-Analyses.

Dataset and functions from the meta-analysis published in Medicine & Science in Sports & Exercise. It contains all the data and functions to reproduce the analysis. "Effectiveness of HIIE versus MICT in Improving Cardiometabolic Risk Factors in Health and Disease: A Meta-analysis". Felipe Mattioni Maturana, Peter Martus, Stephan Zipfel, Andreas M Nieß (2020) <doi:10.1249/MSS.0000000000002506>.

metabolic

Lifecycle:stable CRANstatus R buildstatus Monthly downloadsbadge Total downloadsbadge

The goal of metabolic is to provide all the data and the tools necessary to reproduce the meta-analysis published in Medicine & Science in Sports & Exercise.

Installation

You can install the released version of metabolic from CRAN with:

install.packages("metabolic")

You can install the development version of metabolic from from GitHub with:

# install.packages("remotes")
remotes::install_github("fmmattioni/metabolic")

Datasets

Dataset to reproduce meta-analyses

metabolic::metabolic_meta
#> # A tibble: 391 × 21
#>    study        endpoint population   age category_age duration category_durati…
#>    <chr>        <chr>    <fct>      <dbl> <fct>           <dbl> <fct>           
#>  1 Abdelbasset… BMI      T2D         54.6 > 50 y              8 5 - 10 weeks    
#>  2 Abdelbasset… HbA1c    T2D         54.6 > 50 y              8 5 - 10 weeks    
#>  3 Abdelbasset… HDL      T2D         54.6 > 50 y              8 5 - 10 weeks    
#>  4 Abdelbasset… HOMA-IR  T2D         54.6 > 50 y              8 5 - 10 weeks    
#>  5 Abdelbasset… LDL      T2D         54.6 > 50 y              8 5 - 10 weeks    
#>  6 Abdelbasset… Total C… T2D         54.6 > 50 y              8 5 - 10 weeks    
#>  7 Abdelbasset… Triglyc… T2D         54.6 > 50 y              8 5 - 10 weeks    
#>  8 Bækkerud 20… Body Ma… Overweigh…  40   30 - 50 y           6 5 - 10 weeks    
#>  9 Bækkerud 20… Flow-me… Overweigh…  40   30 - 50 y           6 5 - 10 weeks    
#> 10 Bækkerud 20… VO2max   Overweigh…  40   30 - 50 y           6 5 - 10 weeks    
#> # … with 381 more rows, and 14 more variables: men_ratio <dbl>,
#> #   category_men_ratio <fct>, type_exercise <chr>, bsln <dbl>,
#> #   bsln_adjusted <dbl>, category_bsln <fct>, N_HIIE <dbl>, Mean_HIIE <dbl>,
#> #   SD_HIIE <dbl>, N_MICT <dbl>, Mean_MICT <dbl>, SD_MICT <dbl>, HIIE <chr>,
#> #   desired_effect <chr>

Dataset to build the GOfER diagram

metabolic::metabolic_gofer
#> # A tibble: 115 × 33
#>    study groups sample_populati… sample_fitness sample_men_ratio anamnese_smoker
#>    <chr> <chr>  <chr>            <chr>                     <dbl> <chr>          
#>  1 Abde… HIIT   "T2D"            N/R                        0.63 N              
#>  2 Abde… MICT   "T2D"            N/R                        0.53 N              
#>  3 Bækk… HIIT   "Overweight\nOb… Sedentary                  0.41 N/R            
#>  4 Bækk… MICT   "Overweight\nOb… Sedentary                  0.41 N/R            
#>  5 Beet… HIIT   "Overweight\nOb… Active                     0.66 N/R            
#>  6 Beet… MICT   "Overweight\nOb… Active                     0.8  N/R            
#>  7 Burg… SIT    "Healthy"        Sedentary                  0.5  N/R            
#>  8 Burg… MICT   "Healthy"        Sedentary                  0.5  N/R            
#>  9 Ciol… HIIT   "Healthy"        Sedentary                  0    N              
#> 10 Ciol… MICT   "Healthy"        Sedentary                  0    N              
#> # … with 105 more rows, and 27 more variables:
#> #   anamnese_medicines_to_control_BP <chr>, age <dbl>,
#> #   design_type_of_exercise <chr>, design_sample_size <chr>,
#> #   design_training_duration <dbl>, design_training_frequency <chr>,
#> #   design_exercise_intensity <chr>, hiie_n_reps <chr>,
#> #   hiie_rep_duration <chr>, hiie_work_rest_ratio <chr>, compliance <dbl>,
#> #   endpoints_vo2max <chr>, endpoints_fmd <chr>, endpoints_body_mass <chr>, …

Reproduce meta-analysis for each clinical endpoint

library(metabolic)

perform_meta(endpoint = "VO2max")
#> ──────────────────────────  * VO2max meta-analysis *  ──────────────────────────
#> ✔ 'Overall'
#> ✔       └─ Performing meta-analysis
#> ✔       └─ Performing sensitivity analysis
#> ✔                └─ Meta-analysis results are robust! Keep going!
#> ✔ Performing meta-analysis and meta-regression on the Population subgroup
#> 
#> ✔ Performing meta-analysis and meta-regression on the Age subgroup
#> 
#> ✔ Performing meta-analysis and meta-regression on the Training Duration subgroup
#> 
#> ✔ Performing meta-analysis and meta-regression on the Men Ratio subgroup
#> 
#> ✔ Performing meta-analysis and meta-regression on the Type of Exercise subgroup
#> 
#> ✔ Performing meta-analysis and meta-regression on the Baseline subgroup
#> 
#> ✔ Performing meta-analysis and meta-regression on the Type of HIIE subgroup
#> 
#> ──────────────────────────────────  * DONE *  ──────────────────────────────────
#> # A tibble: 8 × 4
#>   subgroup          meta_analysis sensitivity_analysis meta_regression
#>   <chr>             <named list>  <named list>         <named list>   
#> 1 Overall           <metacont>    <metainf>            <lgl [1]>      
#> 2 Population        <metacont>    <lgl [1]>            <metareg>      
#> 3 Age               <metacont>    <lgl [1]>            <metareg>      
#> 4 Training Duration <metacont>    <lgl [1]>            <metareg>      
#> 5 Men Ratio         <metacont>    <lgl [1]>            <metareg>      
#> 6 Type of Exercise  <metacont>    <lgl [1]>            <metareg>      
#> 7 Baseline Values   <metacont>    <lgl [1]>            <metareg>      
#> 8 Type of HIIE      <metacont>    <lgl [1]>            <metareg>

Build a GOfER (Graphical Overview for Evidence Reviews) diagram

Citation

citation("metabolic")
#> 
#> To cite metabolic in publications use:
#> 
#> Maturana M, Felipe, Martus, Peter, Zipfel, Stephan, Nieß, M A (2020).
#> "Effectiveness of HIIE versus MICT in Improving Cardiometabolic Risk
#> Factors in Health and Disease: a meta-anaylsis." _Medicine & Science in
#> Sports & Exercise_, *Published Ahead of Print*. doi:
#> 10.1249/MSS.0000000000002506 (URL:
#> https://doi.org/10.1249/MSS.0000000000002506), <URL:
#> https://journals.lww.com/acsm-msse/Abstract/9000/Effectiveness_of_HIIE_versus_MICT_in_Improving.96194.aspx>.
#> 
#> A BibTeX entry for LaTeX users is
#> 
#>   @Article{,
#>     title = {Effectiveness of HIIE versus MICT in Improving Cardiometabolic Risk Factors in Health and Disease: a meta-anaylsis},
#>     author = {Mattioni Maturana and {Felipe} and {Martus} and {Peter} and {Zipfel} and {Stephan} and {Nieß} and Andreas M},
#>     journal = {Medicine & Science in Sports & Exercise},
#>     volume = {Published Ahead of Print},
#>     year = {2020},
#>     url = {https://journals.lww.com/acsm-msse/Abstract/9000/Effectiveness_of_HIIE_versus_MICT_in_Improving.96194.aspx},
#>     doi = {10.1249/MSS.0000000000002506},
#>   }
Metadata

Version

0.1.2

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows