MyNixOS website logo
Description

Calculate the Knowledge-Weighted Estimate.

According to a phenomenon known as "the wisdom of the crowds," combining point estimates from multiple judges often provides a more accurate aggregate estimate than using a point estimate from a single judge. However, if the judges use shared information in their estimates, the simple average will over-emphasize this common component at the expense of the judges’ private information. Asa Palley & Ville Satopää (2021) "Boosting the Wisdom of Crowds Within a Single Judgment Problem: Selective Averaging Based on Peer Predictions" <https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3504286> proposes a procedure for calculating a weighted average of the judges’ individual estimates such that resulting aggregate estimate appropriately combines the judges' collective information within a single estimation problem. The authors use both simulation and data from six experimental studies to illustrate that the weighting procedure outperforms existing averaging-like methods, such as the equally weighted average, trimmed average, and median. This aggregate estimate -- know as "the knowledge-weighted estimate" -- inputs a) judges' estimates of a continuous outcome (E) and b) predictions of others' average estimate of this outcome (P). In this R-package, the function knowledge_weighted_estimate(E,P) implements the knowledge-weighted estimate. Its use is illustrated with a simple stylized example and on real-world experimental data.

metaggR

The goal of metaggR is to provide easy access to the knowledge-weighted estimate proposed in Palley and Satopää (2021).

Installation

You can install the released version of metaggR from CRAN with:

install.packages("metaggR")

Three Gorges Dam Example

This section illustrates metaggR on the Three Gorges Dam example in Palley and Satopää (2021).

library(metaggR)
# Judges' estimates:
E1 = c(50, 134, 206, 290, 326, 374)
# Judges' predictions of others:
P1 = c(26, 92, 116, 218, 218, 206)
# Knowledge-weighted estimate:
knowledge_weighted_estimate(E1,P1)
#> [1] 329.305

Therefore the final knowledge-weighted estimate is 329.305

Next, we will illustrate the outlier-robust version of the knowledge-weighted estimate. We augment the simple Three Gorges Dam example with a 7th judge with an extreme response:

# Judges' estimates (augmented):
E2 = c(50, 134, 206, 290, 326, 374, 1000)
# Judges' predictions of others (augmented):
P2 = c(26, 92, 116, 218, 218, 206, 400)
# Knowledge-weighted estimate:
knowledge_weighted_estimate(E2,P2)
#> [1] 630.0491

The knowledge-weighted estimate is now 630.0491, which is much higher than the previous 329.305. Clearly this aggregate estimate is driven largely by the 7th judge. We inspect the crowd for highly influential judges:

get_influence_scores(E2,P2, plotIt = TRUE)
#> [1]  89.6910974  52.0441977  25.6565467  14.3443785   0.9792417  26.6575698
#> [7] 300.7440879

The output prints the influence scores for each judge. Intuitively, an influence score shows how much the knowledge-weighted estimate would change if that judge was removed from the crowd. Our analysis shows that judge 7 is highly influential, with an influence score of around 300. Compare this to the influence scores of judges 1-6. They are all smaller than 90 and hence much smaller than judge 7’s influence score.

The function call also produces two plots. The left plot is a scatter plot of the judges’ estimates against the judges’ implied predictions of others. This plot includes regression lines both with (solid black) and without (dashed red) the exceptionally influential judges. All exceptionally influential judges are shown in red. The knowledge-weighted estimate is shown both with (black square) and without (red circle) exceptionally influential judges. The right plot shows the judges’ influence scores. All exceptionally influential judges are shown in red. The dashed horizontal line represents the threshold, defined as the user-defined cutoff value x the interquartile range of all influence scores.

To remove influential judges’ estimates from the knowledge-weighted estimate, we calculate the interquartile range (IQR) of the individual influence scores and remove a judge if that judge’s influence score is larger than some user-defined cutoff times IQR. Using the default cutoff of 7/2 on the augmented Three Gorges Dam example gives us the original knowledge-weighted estimate of 329.305:

knowledge_weighted_estimate(E2,P2,cutoff=7/2,remove_inf=TRUE)
#> [1] 329.305
Metadata

Version

0.3.0

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows