MyNixOS website logo
Description

Meaningful Grouping of Studies in Meta-Analysis.

Performs meaningful subgrouping in a meta-analysis. This is a two-step process; first, use the iterative grouping functions (e.g., mgbin(), mgcont() ) to partition studies into statistically homogeneous clusters based on their effect size data. Second, use the meaning() function to analyze these new subgroups and understand their composition based on study-level characteristics (e.g., country, setting). This approach helps to uncover hidden structures in meta-analytic data and provide a deeper interpretation of heterogeneity.

metagroup

Meaningful Grouping of Studies in Meta-Analysis

Overview

metagroup provides a suite of tools to uncover hidden structures in meta-analytic data. It uses a two-step process to perform meaningful subgroup analysis:

  1. Group: Use iterative grouping functions (e.g., mgbin(), mgcont()) to partition studies into statistically homogeneous clusters based on their effect size data.
  2. Interpret: Use the meaning() function and its associated plot() method to analyze these new subgroups and understand their composition based on study-level characteristics (e.g., country, setting).

This approach helps to provide a deeper, more data-driven interpretation of heterogeneity in a meta-analysis.


Installation

You can install the development version of metagroup from GitHub with:

# install.packages("remotes")
remotes::install_github("asmpro7/metagroup")

Example Usage

Here is a basic example of the core workflow: first grouping the studies, then finding the meaning behind the groups.

# 1. Load the package
library(metagroup)

# 2. Step 1: Group the studies by homogeneity
# The result contains the original data with a new 'subgroup' column
grouped_results <- mgbin(
  data = study_data,
  event.e = event.e,
  n.e = n.e,
  event.c = event.c,
  n.c = n.c,
  studlab = studlab,
  sm = "OR"
)

# 3. Step 2: Analyze the composition of the new subgroups
meaning_results <- meaning(
  data = grouped_results,
  variables = c("country", "setting")
)

# Print the summary table to see the dominant characteristics of each group
print(meaning_results)

# Plot the results to visualize the composition of all groups
plot(meaning_results)

License

This package is licensed under the GPL-3 License.

Metadata

Version

1.0.2

License

Unknown

Platforms (76)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-linux
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows