MyNixOS website logo
Description

Tidy and Streamlined Metabolomics Data Workflows.

Facilitate tasks typically encountered during metabolomics data analysis including data import, filtering, missing value imputation (Stacklies et al. (2007) <doi:10.1093/bioinformatics/btm069>, Stekhoven et al. (2012) <doi:10.1093/bioinformatics/btr597>, Tibshirani et al. (2017) <doi:10.18129/B9.BIOC.IMPUTE>, Troyanskaya et al. (2001) <doi:10.1093/bioinformatics/17.6.520>), normalization (Bolstad et al. (2003) <doi:10.1093/bioinformatics/19.2.185>, Dieterle et al. (2006) <doi:10.1021/ac051632c>, Zhao et al. (2020) <doi:10.1038/s41598-020-72664-6>) transformation, centering and scaling (Van Den Berg et al. (2006) <doi:10.1186/1471-2164-7-142>) as well as statistical tests and plotting. 'metamorphr' introduces a tidy (Wickham et al. (2019) <doi:10.21105/joss.01686>) format for metabolomics data and is designed to make it easier to build elaborate analysis workflows and to integrate them with 'tidyverse' packages including 'dplyr' and 'ggplot2'.

metamorphr

CRANstatus Codecov testcoverage R-CMD-check Lifecycle:experimental

💡 Overview

The metamorphr package is intended to make working with metabolomics data more fun. For this, metamorphr introduces a tidy data format which stores metabolomics data and associated metadata, as well as MS/MS spectra in one tibble and includes a set of functions to facilitate tasks typically encountered during metabolomics data analysis. This approach allows for an easy integration with Tidyverse packages, including ggplot2 and dplyr.

💾 Installation

Install the stable version from CRAN with:

install.packages("metamorphr")

Alternatively, you can install the development version of metamorphr from GitHub with:

# install.packages("pak")
pak::pak("yasche/metamorphr")

⚙️ Functions

Here is an overview of currently implemented functions.

📑 Examples

✨ Create your analysis workflows in no time

library(metamorphr)
library(ggplot2)

toy_metaboscape %>%
  join_metadata(toy_metaboscape_metadata) %>%
  filter_blank(blank_samples = "blank",
               blank_as_group = T,
               group_column = Group) %>%
  filter_grouped_mv(min_found = 0.75) %>%
  impute_lod() %>%
  normalize_pqn() %>%
  scale_auto() %>%
  plot_pca(group_column = Group) +
    ggplot2::theme_bw()

📊 Seamlessly work with your data sets with dplyr and ggplot2

Easily plot the distribution of all intensities across samples

library(dplyr)

toy_metaboscape %>%
  join_metadata(toy_metaboscape_metadata) %>%
  ggplot2::ggplot(ggplot2::aes(Sample, Intensity, color = Group)) +
    ggplot2::geom_boxplot() +
    ggplot2::theme_bw()

… or compare the intensity of specific features across groups

toy_metaboscape %>%
  join_metadata(toy_metaboscape_metadata) %>%
  dplyr::filter(Name %in% c("Arachidonic acid", "ADP", "NADPH")) %>%
  dplyr::filter(Group %in% c("control", "treatment")) %>%
  ggplot2::ggplot(ggplot2::aes(Group, Intensity, color = Group)) +
    ggplot2::geom_boxplot() +
    ggplot2::facet_wrap(~Name) +
    ggplot2::theme_bw()
Metadata

Version

0.2.0

License

Unknown

Platforms (76)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-linux
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows