MyNixOS website logo
Description

Mixture-of-Experts Modeling for Complex Non-Normal Distributions.

Provides a unified mixture-of-experts (ME) modeling and estimation framework with several original and flexible ME models to model, cluster and classify heterogeneous data in many complex situations where the data are distributed according to non-normal, possibly skewed distributions, and when they might be corrupted by atypical observations. Mixtures-of-Experts models for complex and non-normal distributions ('meteorits') are originally introduced and written in 'Matlab' by Faicel Chamroukhi. The references are mainly the following ones. The references are mainly the following ones. Chamroukhi F., Same A., Govaert, G. and Aknin P. (2009) <doi:10.1016/j.neunet.2009.06.040>. Chamroukhi F. (2010) <https://chamroukhi.com/FChamroukhi-PhD.pdf>. Chamroukhi F. (2015) <arXiv:1506.06707>. Chamroukhi F. (2015) <https://chamroukhi.com/FChamroukhi-HDR.pdf>. Chamroukhi F. (2016) <doi:10.1109/IJCNN.2016.7727580>. Chamroukhi F. (2016) <doi:10.1016/j.neunet.2016.03.002>. Chamroukhi F. (2017) <doi:10.1016/j.neucom.2017.05.044>.

MEteorits: Mixtures-of-ExperTs modEling for cOmplex and non-noRmal dIsTributions

Travis buildstatus CRANversions

MEteorits is an open source toolbox (available in R and Matlab) containing several original and flexible mixtures-of-experts models to model, cluster and classify heteregenous data in many complex situations where the data are distributed according to non-normal and possibly skewed distributions, and when they might be corrupted by atypical observations. The toolbox also contains sparse mixture-of-experts models for high-dimensional data.

Our (dis-)covered meteorits are for instance the following ones:

  • NMoE (Normal Mixtures-of-Experts);
  • tMoE (t Mixtures-of-Experts);
  • SNMoE (Skew-Normal Mixtures-of-Experts);
  • StMoE (Skew t Mixtures-of-Experts).

The models and algorithms are developped and written in Matlab by Faicel Chamroukhi, and translated and designed into R packages by Florian Lecocq, Marius Bartcus and Faicel Chamroukhi.

Installation

You can install the development version of MEteorits from GitHub with:

# install.packages("devtools")
devtools::install_github("fchamroukhi/MEteorits")

To build vignettes for examples of usage, type the command below instead:

# install.packages("devtools")
devtools::install_github("fchamroukhi/MEteorits", 
                         build_opts = c("--no-resave-data", "--no-manual"), 
                         build_vignettes = TRUE)

Use the following command to display vignettes:

browseVignettes("meteorits")

Usage

library(meteorits)
NMoE
# Application to a simulated data set

n <- 500 # Size of the sample
alphak <- matrix(c(0, 8), ncol = 1) # Parameters of the gating network
betak <- matrix(c(0, -2.5, 0, 2.5), ncol = 2) # Regression coefficients of the experts
sigmak <- c(1, 1) # Standard deviations of the experts
x <- seq.int(from = -1, to = 1, length.out = n) # Inputs (predictors)

# Generate sample of size n
sample <- sampleUnivNMoE(alphak = alphak, betak = betak, 
                         sigmak = sigmak, x = x)
y <- sample$y

K <- 2 # Number of regressors/experts
p <- 1 # Order of the polynomial regression (regressors/experts)
q <- 1 # Order of the logistic regression (gating network)

nmoe <- emNMoE(X = x, Y = y, K = K, p = p, q = q, verbose = TRUE)
#> EM NMoE: Iteration: 1 | log-likelihood: -850.659719240158
#> EM NMoE: Iteration: 2 | log-likelihood: -850.524629010475
#> EM NMoE: Iteration: 3 | log-likelihood: -850.430788051698
#> EM NMoE: Iteration: 4 | log-likelihood: -850.283793706938
#> EM NMoE: Iteration: 5 | log-likelihood: -849.97811162098
#> EM NMoE: Iteration: 6 | log-likelihood: -849.309846170774
#> EM NMoE: Iteration: 7 | log-likelihood: -847.853073877546
#> EM NMoE: Iteration: 8 | log-likelihood: -844.760254765814
#> EM NMoE: Iteration: 9 | log-likelihood: -838.538908952736
#> EM NMoE: Iteration: 10 | log-likelihood: -827.124841419721
#> EM NMoE: Iteration: 11 | log-likelihood: -809.002195790739
#> EM NMoE: Iteration: 12 | log-likelihood: -786.082845509062
#> EM NMoE: Iteration: 13 | log-likelihood: -765.697860048611
#> EM NMoE: Iteration: 14 | log-likelihood: -753.84437315637
#> EM NMoE: Iteration: 15 | log-likelihood: -748.545284749922
#> EM NMoE: Iteration: 16 | log-likelihood: -746.181369709665
#> EM NMoE: Iteration: 17 | log-likelihood: -745.062227019926
#> EM NMoE: Iteration: 18 | log-likelihood: -744.517209155278
#> EM NMoE: Iteration: 19 | log-likelihood: -744.248035626126
#> EM NMoE: Iteration: 20 | log-likelihood: -744.113273238347
#> EM NMoE: Iteration: 21 | log-likelihood: -744.04458797388
#> EM NMoE: Iteration: 22 | log-likelihood: -744.008709857418
#> EM NMoE: Iteration: 23 | log-likelihood: -743.989337491229
#> EM NMoE: Iteration: 24 | log-likelihood: -743.978422442498
#> EM NMoE: Iteration: 25 | log-likelihood: -743.971951246252
#> EM NMoE: Iteration: 26 | log-likelihood: -743.967895060795
#> EM NMoE: Iteration: 27 | log-likelihood: -743.965208755974
#> EM NMoE: Iteration: 28 | log-likelihood: -743.963339864259
#> EM NMoE: Iteration: 29 | log-likelihood: -743.961986174011
#> EM NMoE: Iteration: 30 | log-likelihood: -743.960975097926
#> EM NMoE: Iteration: 31 | log-likelihood: -743.960202991077
#> EM NMoE: Iteration: 32 | log-likelihood: -743.959604173327

nmoe$summary()
#> ------------------------------------------
#> Fitted Normal Mixture-of-Experts model
#> ------------------------------------------
#> 
#> NMoE model with K = 2 experts:
#> 
#>  log-likelihood df       AIC      BIC       ICL
#>       -743.9596  8 -751.9596 -768.818 -827.3815
#> 
#> Clustering table (Number of observations in each expert):
#> 
#>   1   2 
#> 292 208 
#> 
#> Regression coefficients:
#> 
#>     Beta(k = 1) Beta(k = 2)
#> 1    0.01265767  -0.1734812
#> X^1  2.26644322  -2.4105137
#> 
#> Variances:
#> 
#>  Sigma2(k = 1) Sigma2(k = 2)
#>       1.103732     0.8591557

nmoe$plot()

# Application to a real data set

data("tempanomalies")
x <- tempanomalies$Year
y <- tempanomalies$AnnualAnomaly

K <- 2 # Number of regressors/experts
p <- 1 # Order of the polynomial regression (regressors/experts)
q <- 1 # Order of the logistic regression (gating network)

nmoe <- emNMoE(X = x, Y = y, K = K, p = p, q = q, verbose = TRUE)
#> EM NMoE: Iteration: 1 | log-likelihood: 48.3988726040827
#> EM NMoE: Iteration: 2 | log-likelihood: 48.9326207295142
#> EM NMoE: Iteration: 3 | log-likelihood: 50.051039377426
#> EM NMoE: Iteration: 4 | log-likelihood: 52.9250961462781
#> EM NMoE: Iteration: 5 | log-likelihood: 59.1669854674966
#> EM NMoE: Iteration: 6 | log-likelihood: 67.5520185593279
#> EM NMoE: Iteration: 7 | log-likelihood: 73.0997722565129
#> EM NMoE: Iteration: 8 | log-likelihood: 75.5728843281524
#> EM NMoE: Iteration: 9 | log-likelihood: 77.1804335125676
#> EM NMoE: Iteration: 10 | log-likelihood: 78.8228583260898
#> EM NMoE: Iteration: 11 | log-likelihood: 80.7994256495649
#> EM NMoE: Iteration: 12 | log-likelihood: 83.4327216902578
#> EM NMoE: Iteration: 13 | log-likelihood: 87.167207159755
#> EM NMoE: Iteration: 14 | log-likelihood: 91.7548816275664
#> EM NMoE: Iteration: 15 | log-likelihood: 94.8386054468416
#> EM NMoE: Iteration: 16 | log-likelihood: 95.8702965168198
#> EM NMoE: Iteration: 17 | log-likelihood: 96.201217475001
#> EM NMoE: Iteration: 18 | log-likelihood: 96.3427273583883
#> EM NMoE: Iteration: 19 | log-likelihood: 96.4312445403178
#> EM NMoE: Iteration: 20 | log-likelihood: 96.5068035716238
#> EM NMoE: Iteration: 21 | log-likelihood: 96.5827848006443
#> EM NMoE: Iteration: 22 | log-likelihood: 96.664497621724
#> EM NMoE: Iteration: 23 | log-likelihood: 96.7544065779447
#> EM NMoE: Iteration: 24 | log-likelihood: 96.8535649805854
#> EM NMoE: Iteration: 25 | log-likelihood: 96.9618980067147
#> EM NMoE: Iteration: 26 | log-likelihood: 97.0781807281132
#> EM NMoE: Iteration: 27 | log-likelihood: 97.2000668915646
#> EM NMoE: Iteration: 28 | log-likelihood: 97.3243471857001
#> EM NMoE: Iteration: 29 | log-likelihood: 97.4475005220902
#> EM NMoE: Iteration: 30 | log-likelihood: 97.566473896656
#> EM NMoE: Iteration: 31 | log-likelihood: 97.6794841146006
#> EM NMoE: Iteration: 32 | log-likelihood: 97.7865826549208
#> EM NMoE: Iteration: 33 | log-likelihood: 97.8897593890552
#> EM NMoE: Iteration: 34 | log-likelihood: 97.9924846700633
#> EM NMoE: Iteration: 35 | log-likelihood: 98.0988320818964
#> EM NMoE: Iteration: 36 | log-likelihood: 98.2124589670307
#> EM NMoE: Iteration: 37 | log-likelihood: 98.3358032691223
#> EM NMoE: Iteration: 38 | log-likelihood: 98.4698046243747
#> EM NMoE: Iteration: 39 | log-likelihood: 98.6142554980094
#> EM NMoE: Iteration: 40 | log-likelihood: 98.7685998935106
#> EM NMoE: Iteration: 41 | log-likelihood: 98.9327260646186
#> EM NMoE: Iteration: 42 | log-likelihood: 99.1075255399307
#> EM NMoE: Iteration: 43 | log-likelihood: 99.2951330061669
#> EM NMoE: Iteration: 44 | log-likelihood: 99.4990978545361
#> EM NMoE: Iteration: 45 | log-likelihood: 99.724781385219
#> EM NMoE: Iteration: 46 | log-likelihood: 99.9802114334364
#> EM NMoE: Iteration: 47 | log-likelihood: 100.277506353508
#> EM NMoE: Iteration: 48 | log-likelihood: 100.634603770888
#> EM NMoE: Iteration: 49 | log-likelihood: 101.074685777405
#> EM NMoE: Iteration: 50 | log-likelihood: 101.609342261681
#> EM NMoE: Iteration: 51 | log-likelihood: 102.167518045425
#> EM NMoE: Iteration: 52 | log-likelihood: 102.591482251134
#> EM NMoE: Iteration: 53 | log-likelihood: 102.692086561759
#> EM NMoE: Iteration: 54 | log-likelihood: 102.721983731666
#> EM NMoE: Iteration: 55 | log-likelihood: 102.721991417921

nmoe$summary()
#> ------------------------------------------
#> Fitted Normal Mixture-of-Experts model
#> ------------------------------------------
#> 
#> NMoE model with K = 2 experts:
#> 
#>  log-likelihood df      AIC      BIC      ICL
#>         102.722  8 94.72199 83.07137 83.17998
#> 
#> Clustering table (Number of observations in each expert):
#> 
#>  1  2 
#> 52 84 
#> 
#> Regression coefficients:
#> 
#>      Beta(k = 1)   Beta(k = 2)
#> 1   -42.36252836 -12.667270814
#> X^1   0.02149289   0.006474796
#> 
#> Variances:
#> 
#>  Sigma2(k = 1) Sigma2(k = 2)
#>     0.01193084    0.01352335

nmoe$plot()

TMoE
# Application to a simulated data set

n <- 500 # Size of the sample
alphak <- matrix(c(0, 8), ncol = 1) # Parameters of the gating network
betak <- matrix(c(0, -2.5, 0, 2.5), ncol = 2) # Regression coefficients of the experts
sigmak <- c(0.5, 0.5) # Standard deviations of the experts
nuk <- c(5, 7) # Degrees of freedom of the experts network t densities
x <- seq.int(from = -1, to = 1, length.out = n) # Inputs (predictors)

# Generate sample of size n
sample <- sampleUnivTMoE(alphak = alphak, betak = betak, sigmak = sigmak, 
                         nuk = nuk, x = x)
y <- sample$y

K <- 2 # Number of regressors/experts
p <- 1 # Order of the polynomial regression (regressors/experts)
q <- 1 # Order of the logistic regression (gating network)

tmoe <- emTMoE(X = x, Y = y, K = K, p = p, q = q, verbose = TRUE)
#> EM - tMoE: Iteration: 1 | log-likelihood: -552.125213974242
#> EM - tMoE: Iteration: 2 | log-likelihood: -547.987183857056
#> EM - tMoE: Iteration: 3 | log-likelihood: -546.40733469181
#> EM - tMoE: Iteration: 4 | log-likelihood: -544.898386695277
#> EM - tMoE: Iteration: 5 | log-likelihood: -543.502686575021
#> EM - tMoE: Iteration: 6 | log-likelihood: -542.283105674398
#> EM - tMoE: Iteration: 7 | log-likelihood: -541.266467232123
#> EM - tMoE: Iteration: 8 | log-likelihood: -540.450661063362
#> EM - tMoE: Iteration: 9 | log-likelihood: -539.815711994686
#> EM - tMoE: Iteration: 10 | log-likelihood: -539.333458769544
#> EM - tMoE: Iteration: 11 | log-likelihood: -538.974215771526
#> EM - tMoE: Iteration: 12 | log-likelihood: -538.710672092328
#> EM - tMoE: Iteration: 13 | log-likelihood: -538.519646653311
#> EM - tMoE: Iteration: 14 | log-likelihood: -538.38248504553
#> EM - tMoE: Iteration: 15 | log-likelihood: -538.284724625379
#> EM - tMoE: Iteration: 16 | log-likelihood: -538.215449987784
#> EM - tMoE: Iteration: 17 | log-likelihood: -538.166584335222
#> EM - tMoE: Iteration: 18 | log-likelihood: -538.132238929576
#> EM - tMoE: Iteration: 19 | log-likelihood: -538.108167974741
#> EM - tMoE: Iteration: 20 | log-likelihood: -538.09133618607
#> EM - tMoE: Iteration: 21 | log-likelihood: -538.07958783267
#> EM - tMoE: Iteration: 22 | log-likelihood: -538.071399628517
#> EM - tMoE: Iteration: 23 | log-likelihood: -538.065699459315
#> EM - tMoE: Iteration: 24 | log-likelihood: -538.061735113966
#> EM - tMoE: Iteration: 25 | log-likelihood: -538.058980140461
#> EM - tMoE: Iteration: 26 | log-likelihood: -538.05706681974
#> EM - tMoE: Iteration: 27 | log-likelihood: -538.055738714103
#> EM - tMoE: Iteration: 28 | log-likelihood: -538.054817220152
#> EM - tMoE: Iteration: 29 | log-likelihood: -538.054178073834
#> EM - tMoE: Iteration: 30 | log-likelihood: -538.053734891082

tmoe$summary()
#> -------------------------------------
#> Fitted t Mixture-of-Experts model
#> -------------------------------------
#> 
#> tMoE model with K = 2 experts:
#> 
#>  log-likelihood df       AIC       BIC       ICL
#>       -538.0537 10 -548.0537 -569.1268 -569.1248
#> 
#> Clustering table (Number of observations in each expert):
#> 
#>   1   2 
#> 249 251 
#> 
#> Regression coefficients:
#> 
#>     Beta(k = 1) Beta(k = 2)
#> 1     0.1725939 -0.08414846
#> X^1   2.7387008 -2.33997997
#> 
#> Variances:
#> 
#>  Sigma2(k = 1) Sigma2(k = 2)
#>      0.2727009     0.4847398

tmoe$plot()

# Application to a real data set

library(MASS)
data("mcycle")
x <- mcycle$times
y <- mcycle$accel

K <- 4 # Number of regressors/experts
p <- 2 # Order of the polynomial regression (regressors/experts)
q <- 1 # Order of the logistic regression (gating network)

tmoe <- emTMoE(X = x, Y = y, K = K, p = p, q = q, verbose = TRUE)
#> EM - tMoE: Iteration: 1 | log-likelihood: -605.266571357791
#> EM - tMoE: Iteration: 2 | log-likelihood: -599.044701698548
#> EM - tMoE: Iteration: 3 | log-likelihood: -595.501279714269
#> EM - tMoE: Iteration: 4 | log-likelihood: -593.009530361222
#> EM - tMoE: Iteration: 5 | log-likelihood: -590.714969153092
#> EM - tMoE: Iteration: 6 | log-likelihood: -587.897449166264
#> EM - tMoE: Iteration: 7 | log-likelihood: -583.582012360803
#> EM - tMoE: Iteration: 8 | log-likelihood: -578.122132426342
#> EM - tMoE: Iteration: 9 | log-likelihood: -573.081475929554
#> EM - tMoE: Iteration: 10 | log-likelihood: -570.74014908355
#> EM - tMoE: Iteration: 11 | log-likelihood: -569.7657737772
#> EM - tMoE: Iteration: 12 | log-likelihood: -568.885074316649
#> EM - tMoE: Iteration: 13 | log-likelihood: -568.011955227929
#> EM - tMoE: Iteration: 14 | log-likelihood: -567.159312820848
#> EM - tMoE: Iteration: 15 | log-likelihood: -566.350991948378
#> EM - tMoE: Iteration: 16 | log-likelihood: -565.616862268021
#> EM - tMoE: Iteration: 17 | log-likelihood: -564.990448386782
#> EM - tMoE: Iteration: 18 | log-likelihood: -564.496384022067
#> EM - tMoE: Iteration: 19 | log-likelihood: -564.13571445338
#> EM - tMoE: Iteration: 20 | log-likelihood: -563.887578265863
#> EM - tMoE: Iteration: 21 | log-likelihood: -563.72301337972
#> EM - tMoE: Iteration: 22 | log-likelihood: -563.61586828125
#> EM - tMoE: Iteration: 23 | log-likelihood: -563.546554999698
#> EM - tMoE: Iteration: 24 | log-likelihood: -563.501679965445
#> EM - tMoE: Iteration: 25 | log-likelihood: -563.472480239373
#> EM - tMoE: Iteration: 26 | log-likelihood: -563.453334332534
#> EM - tMoE: Iteration: 27 | log-likelihood: -563.440660583559
#> EM - tMoE: Iteration: 28 | log-likelihood: -563.43217720637
#> EM - tMoE: Iteration: 29 | log-likelihood: -563.426425658754
#> EM - tMoE: Iteration: 30 | log-likelihood: -563.422468915477
#> EM - tMoE: Iteration: 31 | log-likelihood: -563.41970146878
#> EM - tMoE: Iteration: 32 | log-likelihood: -563.417729585165
#> EM - tMoE: Iteration: 33 | log-likelihood: -563.416295552506
#> EM - tMoE: Iteration: 34 | log-likelihood: -563.415229512982
#> EM - tMoE: Iteration: 35 | log-likelihood: -563.414418669214
#> EM - tMoE: Iteration: 36 | log-likelihood: -563.413787491396
#> EM - tMoE: Iteration: 37 | log-likelihood: -563.413284930069

tmoe$summary()
#> -------------------------------------
#> Fitted t Mixture-of-Experts model
#> -------------------------------------
#> 
#> tMoE model with K = 4 experts:
#> 
#>  log-likelihood df       AIC       BIC       ICL
#>       -563.4133 26 -589.4133 -626.9878 -626.9753
#> 
#> Clustering table (Number of observations in each expert):
#> 
#>  1  2  3  4 
#> 28 36 32 37 
#> 
#> Regression coefficients:
#> 
#>      Beta(k = 1) Beta(k = 2)  Beta(k = 3) Beta(k = 4)
#> 1   -1.037712416  1774.38349 -1434.398457 292.6068438
#> X^1 -0.111685768  -189.85966    84.930824 -12.1664690
#> X^2 -0.007693142     4.74843    -1.205771   0.1248612
#> 
#> Variances:
#> 
#>  Sigma2(k = 1) Sigma2(k = 2) Sigma2(k = 3) Sigma2(k = 4)
#>       1.585304      30.88009      588.3835      572.0153

tmoe$plot()

SNMoE
# Application to a simulated data set

n <- 500 # Size of the sample
alphak <- matrix(c(0, 8), ncol = 1) # Parameters of the gating network
betak <- matrix(c(0, -2.5, 0, 2.5), ncol = 2) # Regression coefficients of the experts
lambdak <- c(3, 5) # Skewness parameters of the experts
sigmak <- c(1, 1) # Standard deviations of the experts
x <- seq.int(from = -1, to = 1, length.out = n) # Inputs (predictors)

# Generate sample of size n
sample <- sampleUnivSNMoE(alphak = alphak, betak = betak, 
                          sigmak = sigmak, lambdak = lambdak, 
                          x = x)
y <- sample$y

K <- 2 # Number of regressors/experts
p <- 1 # Order of the polynomial regression (regressors/experts)
q <- 1 # Order of the logistic regression (gating network)

snmoe <- emSNMoE(X = x, Y = y, K = K, p = p, q = q, verbose = TRUE)
#> EM - SNMoE: Iteration: 1 | log-likelihood: -624.23502477139
#> EM - SNMoE: Iteration: 2 | log-likelihood: -506.408654239152
#> EM - SNMoE: Iteration: 3 | log-likelihood: -501.732792195309
#> EM - SNMoE: Iteration: 4 | log-likelihood: -500.859509544961
#> EM - SNMoE: Iteration: 5 | log-likelihood: -500.597208229948
#> EM - SNMoE: Iteration: 6 | log-likelihood: -500.433113585124
#> EM - SNMoE: Iteration: 7 | log-likelihood: -500.281152659166
#> EM - SNMoE: Iteration: 8 | log-likelihood: -500.133110076618
#> EM - SNMoE: Iteration: 9 | log-likelihood: -499.99191573382
#> EM - SNMoE: Iteration: 10 | log-likelihood: -499.859975065605
#> EM - SNMoE: Iteration: 11 | log-likelihood: -499.738162701963
#> EM - SNMoE: Iteration: 12 | log-likelihood: -499.626441124172
#> EM - SNMoE: Iteration: 13 | log-likelihood: -499.524203019735
#> EM - SNMoE: Iteration: 14 | log-likelihood: -499.430767562131
#> EM - SNMoE: Iteration: 15 | log-likelihood: -499.345391721334
#> EM - SNMoE: Iteration: 16 | log-likelihood: -499.267327179952
#> EM - SNMoE: Iteration: 17 | log-likelihood: -499.195801598347
#> EM - SNMoE: Iteration: 18 | log-likelihood: -499.130253804223
#> EM - SNMoE: Iteration: 19 | log-likelihood: -499.070132602352
#> EM - SNMoE: Iteration: 20 | log-likelihood: -499.014947707728
#> EM - SNMoE: Iteration: 21 | log-likelihood: -498.964221084507
#> EM - SNMoE: Iteration: 22 | log-likelihood: -498.917518912217
#> EM - SNMoE: Iteration: 23 | log-likelihood: -498.874538031141
#> EM - SNMoE: Iteration: 24 | log-likelihood: -498.834888076035
#> EM - SNMoE: Iteration: 25 | log-likelihood: -498.7983021104
#> EM - SNMoE: Iteration: 26 | log-likelihood: -498.764480641263
#> EM - SNMoE: Iteration: 27 | log-likelihood: -498.733202141712
#> EM - SNMoE: Iteration: 28 | log-likelihood: -498.704238852666
#> EM - SNMoE: Iteration: 29 | log-likelihood: -498.677392482473
#> EM - SNMoE: Iteration: 30 | log-likelihood: -498.652491791682
#> EM - SNMoE: Iteration: 31 | log-likelihood: -498.629390755752
#> EM - SNMoE: Iteration: 32 | log-likelihood: -498.607918269276
#> EM - SNMoE: Iteration: 33 | log-likelihood: -498.587910911632
#> EM - SNMoE: Iteration: 34 | log-likelihood: -498.569277705623
#> EM - SNMoE: Iteration: 35 | log-likelihood: -498.55190826306
#> EM - SNMoE: Iteration: 36 | log-likelihood: -498.535687200215
#> EM - SNMoE: Iteration: 37 | log-likelihood: -498.520537677872
#> EM - SNMoE: Iteration: 38 | log-likelihood: -498.506416782001
#> EM - SNMoE: Iteration: 39 | log-likelihood: -498.49320047472
#> EM - SNMoE: Iteration: 40 | log-likelihood: -498.480827889945
#> EM - SNMoE: Iteration: 41 | log-likelihood: -498.469228245683
#> EM - SNMoE: Iteration: 42 | log-likelihood: -498.458344857453
#> EM - SNMoE: Iteration: 43 | log-likelihood: -498.448123845995
#> EM - SNMoE: Iteration: 44 | log-likelihood: -498.438545657271
#> EM - SNMoE: Iteration: 45 | log-likelihood: -498.429540998034
#> EM - SNMoE: Iteration: 46 | log-likelihood: -498.421074031024
#> EM - SNMoE: Iteration: 47 | log-likelihood: -498.41311296707
#> EM - SNMoE: Iteration: 48 | log-likelihood: -498.405605264825
#> EM - SNMoE: Iteration: 49 | log-likelihood: -498.398521521705
#> EM - SNMoE: Iteration: 50 | log-likelihood: -498.391844793288
#> EM - SNMoE: Iteration: 51 | log-likelihood: -498.38552887206
#> EM - SNMoE: Iteration: 52 | log-likelihood: -498.379572728608
#> EM - SNMoE: Iteration: 53 | log-likelihood: -498.37396103451
#> EM - SNMoE: Iteration: 54 | log-likelihood: -498.36866047334
#> EM - SNMoE: Iteration: 55 | log-likelihood: -498.363644517078
#> EM - SNMoE: Iteration: 56 | log-likelihood: -498.358892274563
#> EM - SNMoE: Iteration: 57 | log-likelihood: -498.354380407258
#> EM - SNMoE: Iteration: 58 | log-likelihood: -498.350094791915
#> EM - SNMoE: Iteration: 59 | log-likelihood: -498.34602480772
#> EM - SNMoE: Iteration: 60 | log-likelihood: -498.3421684725
#> EM - SNMoE: Iteration: 61 | log-likelihood: -498.338506556813
#> EM - SNMoE: Iteration: 62 | log-likelihood: -498.33503223395
#> EM - SNMoE: Iteration: 63 | log-likelihood: -498.331713804265
#> EM - SNMoE: Iteration: 64 | log-likelihood: -498.328571094787
#> EM - SNMoE: Iteration: 65 | log-likelihood: -498.325590361659
#> EM - SNMoE: Iteration: 66 | log-likelihood: -498.322755553246
#> EM - SNMoE: Iteration: 67 | log-likelihood: -498.320046428647
#> EM - SNMoE: Iteration: 68 | log-likelihood: -498.317443740077
#> EM - SNMoE: Iteration: 69 | log-likelihood: -498.314960477939
#> EM - SNMoE: Iteration: 70 | log-likelihood: -498.312594638119
#> EM - SNMoE: Iteration: 71 | log-likelihood: -498.310343053809
#> EM - SNMoE: Iteration: 72 | log-likelihood: -498.308196455546
#> EM - SNMoE: Iteration: 73 | log-likelihood: -498.306147088082
#> EM - SNMoE: Iteration: 74 | log-likelihood: -498.304192065459
#> EM - SNMoE: Iteration: 75 | log-likelihood: -498.302317083505
#> EM - SNMoE: Iteration: 76 | log-likelihood: -498.300526286387
#> EM - SNMoE: Iteration: 77 | log-likelihood: -498.298822583771
#> EM - SNMoE: Iteration: 78 | log-likelihood: -498.297194394597
#> EM - SNMoE: Iteration: 79 | log-likelihood: -498.295624150138
#> EM - SNMoE: Iteration: 80 | log-likelihood: -498.294116793465
#> EM - SNMoE: Iteration: 81 | log-likelihood: -498.292667126523
#> EM - SNMoE: Iteration: 82 | log-likelihood: -498.291273946415
#> EM - SNMoE: Iteration: 83 | log-likelihood: -498.289934769731
#> EM - SNMoE: Iteration: 84 | log-likelihood: -498.28864214422
#> EM - SNMoE: Iteration: 85 | log-likelihood: -498.287406098769
#> EM - SNMoE: Iteration: 86 | log-likelihood: -498.286223595463
#> EM - SNMoE: Iteration: 87 | log-likelihood: -498.28508616981
#> EM - SNMoE: Iteration: 88 | log-likelihood: -498.283997340883
#> EM - SNMoE: Iteration: 89 | log-likelihood: -498.282950283835
#> EM - SNMoE: Iteration: 90 | log-likelihood: -498.281940546453
#> EM - SNMoE: Iteration: 91 | log-likelihood: -498.280971375546
#> EM - SNMoE: Iteration: 92 | log-likelihood: -498.28003834533
#> EM - SNMoE: Iteration: 93 | log-likelihood: -498.279136372523
#> EM - SNMoE: Iteration: 94 | log-likelihood: -498.278266652903
#> EM - SNMoE: Iteration: 95 | log-likelihood: -498.277436244929
#> EM - SNMoE: Iteration: 96 | log-likelihood: -498.27663442817
#> EM - SNMoE: Iteration: 97 | log-likelihood: -498.275865623848
#> EM - SNMoE: Iteration: 98 | log-likelihood: -498.275123197331
#> EM - SNMoE: Iteration: 99 | log-likelihood: -498.274404273745
#> EM - SNMoE: Iteration: 100 | log-likelihood: -498.273705295173
#> EM - SNMoE: Iteration: 101 | log-likelihood: -498.273034134751
#> EM - SNMoE: Iteration: 102 | log-likelihood: -498.272385781012
#> EM - SNMoE: Iteration: 103 | log-likelihood: -498.271755604265
#> EM - SNMoE: Iteration: 104 | log-likelihood: -498.271148680279
#> EM - SNMoE: Iteration: 105 | log-likelihood: -498.270561891543
#> EM - SNMoE: Iteration: 106 | log-likelihood: -498.269995057457
#> EM - SNMoE: Iteration: 107 | log-likelihood: -498.269443948584
#> EM - SNMoE: Iteration: 108 | log-likelihood: -498.268911556956
#> EM - SNMoE: Iteration: 109 | log-likelihood: -498.268399011873
#> EM - SNMoE: Iteration: 110 | log-likelihood: -498.267901191242

snmoe$summary()
#> -----------------------------------------------
#> Fitted Skew-Normal Mixture-of-Experts model
#> -----------------------------------------------
#> 
#> SNMoE model with K = 2 experts:
#> 
#>  log-likelihood df       AIC       BIC       ICL
#>       -498.2679 10 -508.2679 -529.3409 -529.3804
#> 
#> Clustering table (Number of observations in each expert):
#> 
#>   1   2 
#> 249 251 
#> 
#> Regression coefficients:
#> 
#>     Beta(k = 1) Beta(k = 2)
#> 1     0.9709634    1.021977
#> X^1   2.6703213   -2.736127
#> 
#> Variances:
#> 
#>  Sigma2(k = 1) Sigma2(k = 2)
#>      0.4324076     0.4345685

snmoe$plot()

# Application to a real data set

data("tempanomalies")
x <- tempanomalies$Year
y <- tempanomalies$AnnualAnomaly

K <- 2 # Number of regressors/experts
p <- 1 # Order of the polynomial regression (regressors/experts)
q <- 1 # Order of the logistic regression (gating network)

snmoe <- emSNMoE(X = x, Y = y, K = K, p = p, q = q, verbose = TRUE)
#> EM - SNMoE: Iteration: 1 | log-likelihood: 62.292138332677
#> EM - SNMoE: Iteration: 2 | log-likelihood: 87.9145425373437
#> EM - SNMoE: Iteration: 3 | log-likelihood: 89.0086739618696
#> EM - SNMoE: Iteration: 4 | log-likelihood: 89.3937914630249
#> EM - SNMoE: Iteration: 5 | log-likelihood: 89.6535757640902
#> EM - SNMoE: Iteration: 6 | log-likelihood: 89.8306729565452
#> EM - SNMoE: Iteration: 7 | log-likelihood: 89.9327809726066
#> EM - SNMoE: Iteration: 8 | log-likelihood: 89.9900101339138
#> EM - SNMoE: Iteration: 9 | log-likelihood: 90.0239748570575
#> EM - SNMoE: Iteration: 10 | log-likelihood: 90.0475270018937
#> EM - SNMoE: Iteration: 11 | log-likelihood: 90.0668977115359
#> EM - SNMoE: Iteration: 12 | log-likelihood: 90.0840572217388
#> EM - SNMoE: Iteration: 13 | log-likelihood: 90.0996801870063
#> EM - SNMoE: Iteration: 14 | log-likelihood: 90.114322139282
#> EM - SNMoE: Iteration: 15 | log-likelihood: 90.1282969436904
#> EM - SNMoE: Iteration: 16 | log-likelihood: 90.1417415969409
#> EM - SNMoE: Iteration: 17 | log-likelihood: 90.1547229730222
#> EM - SNMoE: Iteration: 18 | log-likelihood: 90.1672833715162
#> EM - SNMoE: Iteration: 19 | log-likelihood: 90.1794404195207
#> EM - SNMoE: Iteration: 20 | log-likelihood: 90.1912239923447
#> EM - SNMoE: Iteration: 21 | log-likelihood: 90.2026508363525
#> EM - SNMoE: Iteration: 22 | log-likelihood: 90.2137384324658
#> EM - SNMoE: Iteration: 23 | log-likelihood: 90.2245065555815
#> EM - SNMoE: Iteration: 24 | log-likelihood: 90.2349750729752
#> EM - SNMoE: Iteration: 25 | log-likelihood: 90.2452036384708
#> EM - SNMoE: Iteration: 26 | log-likelihood: 90.255194718755
#> EM - SNMoE: Iteration: 27 | log-likelihood: 90.2649308422496
#> EM - SNMoE: Iteration: 28 | log-likelihood: 90.2744302834456
#> EM - SNMoE: Iteration: 29 | log-likelihood: 90.2837106908074
#> EM - SNMoE: Iteration: 30 | log-likelihood: 90.2928990112787
#> EM - SNMoE: Iteration: 31 | log-likelihood: 90.3016166594444
#> EM - SNMoE: Iteration: 32 | log-likelihood: 90.3102947751805
#> EM - SNMoE: Iteration: 33 | log-likelihood: 90.318900466279
#> EM - SNMoE: Iteration: 34 | log-likelihood: 90.3274306744404
#> EM - SNMoE: Iteration: 35 | log-likelihood: 90.3358671627185
#> EM - SNMoE: Iteration: 36 | log-likelihood: 90.3443859982734
#> EM - SNMoE: Iteration: 37 | log-likelihood: 90.3526959594068
#> EM - SNMoE: Iteration: 38 | log-likelihood: 90.3609977875098
#> EM - SNMoE: Iteration: 39 | log-likelihood: 90.3692807155406
#> EM - SNMoE: Iteration: 40 | log-likelihood: 90.3774653899762
#> EM - SNMoE: Iteration: 41 | log-likelihood: 90.3856183967777
#> EM - SNMoE: Iteration: 42 | log-likelihood: 90.393720562392
#> EM - SNMoE: Iteration: 43 | log-likelihood: 90.4017868140956
#> EM - SNMoE: Iteration: 44 | log-likelihood: 90.4098062308868
#> EM - SNMoE: Iteration: 45 | log-likelihood: 90.4177820881849
#> EM - SNMoE: Iteration: 46 | log-likelihood: 90.4257087087515
#> EM - SNMoE: Iteration: 47 | log-likelihood: 90.4335795968909
#> EM - SNMoE: Iteration: 48 | log-likelihood: 90.4413904823497
#> EM - SNMoE: Iteration: 49 | log-likelihood: 90.4491411451583
#> EM - SNMoE: Iteration: 50 | log-likelihood: 90.4568177335901
#> EM - SNMoE: Iteration: 51 | log-likelihood: 90.4644226598137
#> EM - SNMoE: Iteration: 52 | log-likelihood: 90.4719514584366
#> EM - SNMoE: Iteration: 53 | log-likelihood: 90.479401028492
#> EM - SNMoE: Iteration: 54 | log-likelihood: 90.4867728675382
#> EM - SNMoE: Iteration: 55 | log-likelihood: 90.4940408877717
#> EM - SNMoE: Iteration: 56 | log-likelihood: 90.5012509412612
#> EM - SNMoE: Iteration: 57 | log-likelihood: 90.5083684584508
#> EM - SNMoE: Iteration: 58 | log-likelihood: 90.5154189149307
#> EM - SNMoE: Iteration: 59 | log-likelihood: 90.5223930629885
#> EM - SNMoE: Iteration: 60 | log-likelihood: 90.5292946631728
#> EM - SNMoE: Iteration: 61 | log-likelihood: 90.5361177953662
#> EM - SNMoE: Iteration: 62 | log-likelihood: 90.5428708142414
#> EM - SNMoE: Iteration: 63 | log-likelihood: 90.5495499096576
#> EM - SNMoE: Iteration: 64 | log-likelihood: 90.5561559212972
#> EM - SNMoE: Iteration: 65 | log-likelihood: 90.5626843501471
#> EM - SNMoE: Iteration: 66 | log-likelihood: 90.5691420841755
#> EM - SNMoE: Iteration: 67 | log-likelihood: 90.5755235491849
#> EM - SNMoE: Iteration: 68 | log-likelihood: 90.5818282391941
#> EM - SNMoE: Iteration: 69 | log-likelihood: 90.588057662454
#> EM - SNMoE: Iteration: 70 | log-likelihood: 90.5942112112893
#> EM - SNMoE: Iteration: 71 | log-likelihood: 90.6002904111158
#> EM - SNMoE: Iteration: 72 | log-likelihood: 90.6062951042856
#> EM - SNMoE: Iteration: 73 | log-likelihood: 90.6122217992879
#> EM - SNMoE: Iteration: 74 | log-likelihood: 90.6180722178595
#> EM - SNMoE: Iteration: 75 | log-likelihood: 90.6238454668585
#> EM - SNMoE: Iteration: 76 | log-likelihood: 90.6295405360689
#> EM - SNMoE: Iteration: 77 | log-likelihood: 90.6351564394961
#> EM - SNMoE: Iteration: 78 | log-likelihood: 90.6406924459854
#> EM - SNMoE: Iteration: 79 | log-likelihood: 90.6461477415273
#> EM - SNMoE: Iteration: 80 | log-likelihood: 90.6515164371587
#> EM - SNMoE: Iteration: 81 | log-likelihood: 90.6568037706302
#> EM - SNMoE: Iteration: 82 | log-likelihood: 90.6620091052585
#> EM - SNMoE: Iteration: 83 | log-likelihood: 90.667130410317
#> EM - SNMoE: Iteration: 84 | log-likelihood: 90.6721658072011
#> EM - SNMoE: Iteration: 85 | log-likelihood: 90.6771148463352
#> EM - SNMoE: Iteration: 86 | log-likelihood: 90.681975635394
#> EM - SNMoE: Iteration: 87 | log-likelihood: 90.6867485519895
#> EM - SNMoE: Iteration: 88 | log-likelihood: 90.6914280877635
#> EM - SNMoE: Iteration: 89 | log-likelihood: 90.6960216984873
#> EM - SNMoE: Iteration: 90 | log-likelihood: 90.700522990832
#> EM - SNMoE: Iteration: 91 | log-likelihood: 90.7049253352189
#> EM - SNMoE: Iteration: 92 | log-likelihood: 90.709224577687
#> EM - SNMoE: Iteration: 93 | log-likelihood: 90.7134204651541
#> EM - SNMoE: Iteration: 94 | log-likelihood: 90.7175128344209
#> EM - SNMoE: Iteration: 95 | log-likelihood: 90.7215671817578
#> EM - SNMoE: Iteration: 96 | log-likelihood: 90.7252765782458
#> EM - SNMoE: Iteration: 97 | log-likelihood: 90.7291598798633
#> EM - SNMoE: Iteration: 98 | log-likelihood: 90.7327071459299
#> EM - SNMoE: Iteration: 99 | log-likelihood: 90.7361862704723
#> EM - SNMoE: Iteration: 100 | log-likelihood: 90.7395673235959
#> EM - SNMoE: Iteration: 101 | log-likelihood: 90.7428509976105
#> EM - SNMoE: Iteration: 102 | log-likelihood: 90.7460719415064
#> EM - SNMoE: Iteration: 103 | log-likelihood: 90.749148330663
#> EM - SNMoE: Iteration: 104 | log-likelihood: 90.7521504284841
#> EM - SNMoE: Iteration: 105 | log-likelihood: 90.7550452978402
#> EM - SNMoE: Iteration: 106 | log-likelihood: 90.7578330083901
#> EM - SNMoE: Iteration: 107 | log-likelihood: 90.7605218349915
#> EM - SNMoE: Iteration: 108 | log-likelihood: 90.7631207727075
#> EM - SNMoE: Iteration: 109 | log-likelihood: 90.7656309322501
#> EM - SNMoE: Iteration: 110 | log-likelihood: 90.7681987652464
#> EM - SNMoE: Iteration: 111 | log-likelihood: 90.7705554083849
#> EM - SNMoE: Iteration: 112 | log-likelihood: 90.7727831095643
#> EM - SNMoE: Iteration: 113 | log-likelihood: 90.7749301181656
#> EM - SNMoE: Iteration: 114 | log-likelihood: 90.7770198273515
#> EM - SNMoE: Iteration: 115 | log-likelihood: 90.7790073891405
#> EM - SNMoE: Iteration: 116 | log-likelihood: 90.7809308289703
#> EM - SNMoE: Iteration: 117 | log-likelihood: 90.7827763625305
#> EM - SNMoE: Iteration: 118 | log-likelihood: 90.7845439068696
#> EM - SNMoE: Iteration: 119 | log-likelihood: 90.7862393745289
#> EM - SNMoE: Iteration: 120 | log-likelihood: 90.7878675208113
#> EM - SNMoE: Iteration: 121 | log-likelihood: 90.7894302838505
#> EM - SNMoE: Iteration: 122 | log-likelihood: 90.7909296453262
#> EM - SNMoE: Iteration: 123 | log-likelihood: 90.7923678843603
#> EM - SNMoE: Iteration: 124 | log-likelihood: 90.7938593408333
#> EM - SNMoE: Iteration: 125 | log-likelihood: 90.7951720999987
#> EM - SNMoE: Iteration: 126 | log-likelihood: 90.7964313348435
#> EM - SNMoE: Iteration: 127 | log-likelihood: 90.7976391837204
#> EM - SNMoE: Iteration: 128 | log-likelihood: 90.7987952062374
#> EM - SNMoE: Iteration: 129 | log-likelihood: 90.7999014144276
#> EM - SNMoE: Iteration: 130 | log-likelihood: 90.8009598238791
#> EM - SNMoE: Iteration: 131 | log-likelihood: 90.8019888206512
#> EM - SNMoE: Iteration: 132 | log-likelihood: 90.8029562142312
#> EM - SNMoE: Iteration: 133 | log-likelihood: 90.8038899405207
#> EM - SNMoE: Iteration: 134 | log-likelihood: 90.8047809346196
#> EM - SNMoE: Iteration: 135 | log-likelihood: 90.8056288697112
#> EM - SNMoE: Iteration: 136 | log-likelihood: 90.8064365102508
#> EM - SNMoE: Iteration: 137 | log-likelihood: 90.8072083975976
#> EM - SNMoE: Iteration: 138 | log-likelihood: 90.8079459623392
#> EM - SNMoE: Iteration: 139 | log-likelihood: 90.8086504624255
#> EM - SNMoE: Iteration: 140 | log-likelihood: 90.8093228982677
#> EM - SNMoE: Iteration: 141 | log-likelihood: 90.8099654751608
#> EM - SNMoE: Iteration: 142 | log-likelihood: 90.8106446102449
#> EM - SNMoE: Iteration: 143 | log-likelihood: 90.8112306380695
#> EM - SNMoE: Iteration: 144 | log-likelihood: 90.8117910134191
#> EM - SNMoE: Iteration: 145 | log-likelihood: 90.8123264869821
#> EM - SNMoE: Iteration: 146 | log-likelihood: 90.8128353064792
#> EM - SNMoE: Iteration: 147 | log-likelihood: 90.813320758887
#> EM - SNMoE: Iteration: 148 | log-likelihood: 90.8137841377893
#> EM - SNMoE: Iteration: 149 | log-likelihood: 90.8142266707801
#> EM - SNMoE: Iteration: 150 | log-likelihood: 90.8146593536573
#> EM - SNMoE: Iteration: 151 | log-likelihood: 90.8150625412625
#> EM - SNMoE: Iteration: 152 | log-likelihood: 90.8154579266665
#> EM - SNMoE: Iteration: 153 | log-likelihood: 90.8158258545648
#> EM - SNMoE: Iteration: 154 | log-likelihood: 90.8161773354621
#> EM - SNMoE: Iteration: 155 | log-likelihood: 90.8165130292432
#> EM - SNMoE: Iteration: 156 | log-likelihood: 90.8168339082089
#> EM - SNMoE: Iteration: 157 | log-likelihood: 90.8171408598141
#> EM - SNMoE: Iteration: 158 | log-likelihood: 90.8174343507612
#> EM - SNMoE: Iteration: 159 | log-likelihood: 90.8177150405841
#> EM - SNMoE: Iteration: 160 | log-likelihood: 90.8179829474516
#> EM - SNMoE: Iteration: 161 | log-likelihood: 90.8182386605315
#> EM - SNMoE: Iteration: 162 | log-likelihood: 90.8185290095565
#> EM - SNMoE: Iteration: 163 | log-likelihood: 90.818718303285
#> EM - SNMoE: Iteration: 164 | log-likelihood: 90.8189892103138
#> EM - SNMoE: Iteration: 165 | log-likelihood: 90.8192039239698
#> EM - SNMoE: Iteration: 166 | log-likelihood: 90.8193641478361
#> EM - SNMoE: Iteration: 167 | log-likelihood: 90.8196070442012
#> EM - SNMoE: Iteration: 168 | log-likelihood: 90.8197949331449
#> EM - SNMoE: Iteration: 169 | log-likelihood: 90.81997483171
#> EM - SNMoE: Iteration: 170 | log-likelihood: 90.8201473016286
#> EM - SNMoE: Iteration: 171 | log-likelihood: 90.8203136768737
#> EM - SNMoE: Iteration: 172 | log-likelihood: 90.8204744695155
#> EM - SNMoE: Iteration: 173 | log-likelihood: 90.820628259348
#> EM - SNMoE: Iteration: 174 | log-likelihood: 90.8207754470074
#> EM - SNMoE: Iteration: 175 | log-likelihood: 90.8209167839697
#> EM - SNMoE: Iteration: 176 | log-likelihood: 90.8210525848093
#> EM - SNMoE: Iteration: 177 | log-likelihood: 90.8211826587277
#> EM - SNMoE: Iteration: 178 | log-likelihood: 90.8213073953412
#> EM - SNMoE: Iteration: 179 | log-likelihood: 90.8214281260729
#> EM - SNMoE: Iteration: 180 | log-likelihood: 90.8215444184688
#> EM - SNMoE: Iteration: 181 | log-likelihood: 90.821656408958
#> EM - SNMoE: Iteration: 182 | log-likelihood: 90.8217642942328
#> EM - SNMoE: Iteration: 183 | log-likelihood: 90.8218682729254
#> EM - SNMoE: Iteration: 184 | log-likelihood: 90.8219689323786
#> EM - SNMoE: Iteration: 185 | log-likelihood: 90.8220661409908
#> EM - SNMoE: Iteration: 186 | log-likelihood: 90.8221825393501
#> EM - SNMoE: Iteration: 187 | log-likelihood: 90.8222726222892

snmoe$summary()
#> -----------------------------------------------
#> Fitted Skew-Normal Mixture-of-Experts model
#> -----------------------------------------------
#> 
#> SNMoE model with K = 2 experts:
#> 
#>  log-likelihood df      AIC    BIC      ICL
#>        90.82227 10 80.82227 66.259 66.16274
#> 
#> Clustering table (Number of observations in each expert):
#> 
#>  1  2 
#> 69 67 
#> 
#> Regression coefficients:
#> 
#>       Beta(k = 1)  Beta(k = 2)
#> 1   -14.217412214 -32.63731250
#> X^1   0.007303448   0.01668922
#> 
#> Variances:
#> 
#>  Sigma2(k = 1) Sigma2(k = 2)
#>     0.01492812    0.03739716

snmoe$plot()

StMoE
# Applicartion to a simulated data set

n <- 500 # Size of the sample
alphak <- matrix(c(0, 8), ncol = 1) # Parameters of the gating network
betak <- matrix(c(0, -2.5, 0, 2.5), ncol = 2) # Regression coefficients of the experts
sigmak <- c(0.5, 0.5) # Standard deviations of the experts
lambdak <- c(3, 5) # Skewness parameters of the experts
nuk <- c(5, 7) # Degrees of freedom of the experts network t densities
x <- seq.int(from = -1, to = 1, length.out = n) # Inputs (predictors)

# Generate sample of size n
sample <- sampleUnivStMoE(alphak = alphak, betak = betak, 
                          sigmak = sigmak, lambdak = lambdak, 
                          nuk = nuk, x = x)
y <- sample$y

K <- 2 # Number of regressors/experts
p <- 1 # Order of the polynomial regression (regressors/experts)
q <- 1 # Order of the logistic regression (gating network)

stmoe <- emStMoE(X = x, Y = y, K = K, p = p, q = q, verbose = TRUE)
#> EM - StMoE: Iteration: 1 | log-likelihood: -440.883552325807
#> EM - StMoE: Iteration: 2 | log-likelihood: -375.041451068938
#> EM - StMoE: Iteration: 3 | log-likelihood: -362.870294323756
#> EM - StMoE: Iteration: 4 | log-likelihood: -353.094409813433
#> EM - StMoE: Iteration: 5 | log-likelihood: -345.084704974844
#> EM - StMoE: Iteration: 6 | log-likelihood: -338.385721447189
#> EM - StMoE: Iteration: 7 | log-likelihood: -332.711434207247
#> EM - StMoE: Iteration: 8 | log-likelihood: -327.869250919329
#> EM - StMoE: Iteration: 9 | log-likelihood: -323.722486281363
#> EM - StMoE: Iteration: 10 | log-likelihood: -320.174322569213
#> EM - StMoE: Iteration: 11 | log-likelihood: -317.145317584615
#> EM - StMoE: Iteration: 12 | log-likelihood: -314.564125534049
#> EM - StMoE: Iteration: 13 | log-likelihood: -312.365799387958
#> EM - StMoE: Iteration: 14 | log-likelihood: -310.494816434848
#> EM - StMoE: Iteration: 15 | log-likelihood: -308.90734115717
#> EM - StMoE: Iteration: 16 | log-likelihood: -307.562662018129
#> EM - StMoE: Iteration: 17 | log-likelihood: -306.431863696511
#> EM - StMoE: Iteration: 18 | log-likelihood: -305.491159408921
#> EM - StMoE: Iteration: 19 | log-likelihood: -304.713201844797
#> EM - StMoE: Iteration: 20 | log-likelihood: -304.076291722324
#> EM - StMoE: Iteration: 21 | log-likelihood: -303.556264095577
#> EM - StMoE: Iteration: 22 | log-likelihood: -303.133105733088
#> EM - StMoE: Iteration: 23 | log-likelihood: -302.788962131677
#> EM - StMoE: Iteration: 24 | log-likelihood: -302.510214757931
#> EM - StMoE: Iteration: 25 | log-likelihood: -302.284355856085
#> EM - StMoE: Iteration: 26 | log-likelihood: -302.102709492201
#> EM - StMoE: Iteration: 27 | log-likelihood: -301.952229413618
#> EM - StMoE: Iteration: 28 | log-likelihood: -301.828306594261
#> EM - StMoE: Iteration: 29 | log-likelihood: -301.727844905847
#> EM - StMoE: Iteration: 30 | log-likelihood: -301.648397641675
#> EM - StMoE: Iteration: 31 | log-likelihood: -301.587551566133
#> EM - StMoE: Iteration: 32 | log-likelihood: -301.543221465035
#> EM - StMoE: Iteration: 33 | log-likelihood: -301.513271473494
#> EM - StMoE: Iteration: 34 | log-likelihood: -301.493057761561
#> EM - StMoE: Iteration: 35 | log-likelihood: -301.479539851439
#> EM - StMoE: Iteration: 36 | log-likelihood: -301.472848664551
#> EM - StMoE: Iteration: 37 | log-likelihood: -301.470938151252
#> EM - StMoE: Iteration: 38 | log-likelihood: -301.473915142384
#> EM - StMoE: Iteration: 39 | log-likelihood: -301.482189626534
#> EM - StMoE: Iteration: 40 | log-likelihood: -301.492724445284
#> EM - StMoE: Iteration: 41 | log-likelihood: -301.504430808141
#> EM - StMoE: Iteration: 42 | log-likelihood: -301.520362479513
#> EM - StMoE: Iteration: 43 | log-likelihood: -301.537844646926
#> EM - StMoE: Iteration: 44 | log-likelihood: -301.558557865998
#> EM - StMoE: Iteration: 45 | log-likelihood: -301.580326531981
#> EM - StMoE: Iteration: 46 | log-likelihood: -301.6019097139
#> EM - StMoE: Iteration: 47 | log-likelihood: -301.622978880623
#> EM - StMoE: Iteration: 48 | log-likelihood: -301.643425685362
#> EM - StMoE: Iteration: 49 | log-likelihood: -301.663097097178
#> EM - StMoE: Iteration: 50 | log-likelihood: -301.682215354801
#> EM - StMoE: Iteration: 51 | log-likelihood: -301.70079024187
#> EM - StMoE: Iteration: 52 | log-likelihood: -301.719757725239
#> EM - StMoE: Iteration: 53 | log-likelihood: -301.739381113304
#> EM - StMoE: Iteration: 54 | log-likelihood: -301.759540649247
#> EM - StMoE: Iteration: 55 | log-likelihood: -301.779249480904
#> EM - StMoE: Iteration: 56 | log-likelihood: -301.797911724126
#> EM - StMoE: Iteration: 57 | log-likelihood: -301.81623977499
#> EM - StMoE: Iteration: 58 | log-likelihood: -301.833272923682
#> EM - StMoE: Iteration: 59 | log-likelihood: -301.849360112204
#> EM - StMoE: Iteration: 60 | log-likelihood: -301.864650313966
#> EM - StMoE: Iteration: 61 | log-likelihood: -301.879219103222
#> EM - StMoE: Iteration: 62 | log-likelihood: -301.893072095918
#> EM - StMoE: Iteration: 63 | log-likelihood: -301.906573460693
#> EM - StMoE: Iteration: 64 | log-likelihood: -301.919762960663
#> EM - StMoE: Iteration: 65 | log-likelihood: -301.932522405111
#> EM - StMoE: Iteration: 66 | log-likelihood: -301.945156344736
#> EM - StMoE: Iteration: 67 | log-likelihood: -301.957387126573
#> EM - StMoE: Iteration: 68 | log-likelihood: -301.969115554813
#> EM - StMoE: Iteration: 69 | log-likelihood: -301.98037510572
#> EM - StMoE: Iteration: 70 | log-likelihood: -301.991617754184
#> EM - StMoE: Iteration: 71 | log-likelihood: -302.002560717356
#> EM - StMoE: Iteration: 72 | log-likelihood: -302.013087192795
#> EM - StMoE: Iteration: 73 | log-likelihood: -302.023158356658
#> EM - StMoE: Iteration: 74 | log-likelihood: -302.033353078519
#> EM - StMoE: Iteration: 75 | log-likelihood: -302.043205904383
#> EM - StMoE: Iteration: 76 | log-likelihood: -302.052643511154
#> EM - StMoE: Iteration: 77 | log-likelihood: -302.061810797848
#> EM - StMoE: Iteration: 78 | log-likelihood: -302.070902764504
#> EM - StMoE: Iteration: 79 | log-likelihood: -302.07973925995
#> EM - StMoE: Iteration: 80 | log-likelihood: -302.088242899838
#> EM - StMoE: Iteration: 81 | log-likelihood: -302.096388313632
#> EM - StMoE: Iteration: 82 | log-likelihood: -302.104175694891
#> EM - StMoE: Iteration: 83 | log-likelihood: -302.111617068742
#> EM - StMoE: Iteration: 84 | log-likelihood: -302.118925441493
#> EM - StMoE: Iteration: 85 | log-likelihood: -302.125457707218
#> EM - StMoE: Iteration: 86 | log-likelihood: -302.13197004521
#> EM - StMoE: Iteration: 87 | log-likelihood: -302.138129224314
#> EM - StMoE: Iteration: 88 | log-likelihood: -302.144160520975
#> EM - StMoE: Iteration: 89 | log-likelihood: -302.149916599427
#> EM - StMoE: Iteration: 90 | log-likelihood: -302.155426446231
#> EM - StMoE: Iteration: 91 | log-likelihood: -302.160714471348
#> EM - StMoE: Iteration: 92 | log-likelihood: -302.165802591342
#> EM - StMoE: Iteration: 93 | log-likelihood: -302.170710814011
#> EM - StMoE: Iteration: 94 | log-likelihood: -302.175457223439
#> EM - StMoE: Iteration: 95 | log-likelihood: -302.180057795817
#> EM - StMoE: Iteration: 96 | log-likelihood: -302.184526236955
#> EM - StMoE: Iteration: 97 | log-likelihood: -302.188117253055
#> EM - StMoE: Iteration: 98 | log-likelihood: -302.191944047832
#> EM - StMoE: Iteration: 99 | log-likelihood: -302.195764719166
#> EM - StMoE: Iteration: 100 | log-likelihood: -302.199416754305
#> EM - StMoE: Iteration: 101 | log-likelihood: -302.202913987336
#> EM - StMoE: Iteration: 102 | log-likelihood: -302.206266279947
#> EM - StMoE: Iteration: 103 | log-likelihood: -302.209481287433
#> EM - StMoE: Iteration: 104 | log-likelihood: -302.21256540455
#> EM - StMoE: Iteration: 105 | log-likelihood: -302.215524201826
#> EM - StMoE: Iteration: 106 | log-likelihood: -302.21844028189
#> EM - StMoE: Iteration: 107 | log-likelihood: -302.221347360257
#> EM - StMoE: Iteration: 108 | log-likelihood: -302.224198487454
#> EM - StMoE: Iteration: 109 | log-likelihood: -302.226968823771
#> EM - StMoE: Iteration: 110 | log-likelihood: -302.22964637945
#> EM - StMoE: Iteration: 111 | log-likelihood: -302.232226540156
#> EM - StMoE: Iteration: 112 | log-likelihood: -302.234708840608
#> EM - StMoE: Iteration: 113 | log-likelihood: -302.237095073969
#> EM - StMoE: Iteration: 114 | log-likelihood: -302.239388193955
#> EM - StMoE: Iteration: 115 | log-likelihood: -302.241591686042
#> EM - StMoE: Iteration: 116 | log-likelihood: -302.243709214893
#> EM - StMoE: Iteration: 117 | log-likelihood: -302.245744433168
#> EM - StMoE: Iteration: 118 | log-likelihood: -302.247700883553
#> EM - StMoE: Iteration: 119 | log-likelihood: -302.24958195369
#> EM - StMoE: Iteration: 120 | log-likelihood: -302.251390860385
#> EM - StMoE: Iteration: 121 | log-likelihood: -302.253130649339
#> EM - StMoE: Iteration: 122 | log-likelihood: -302.254804202543
#> EM - StMoE: Iteration: 123 | log-likelihood: -302.256414248943
#> EM - StMoE: Iteration: 124 | log-likelihood: -302.257963375992
#> EM - StMoE: Iteration: 125 | log-likelihood: -302.25945404088
#> EM - StMoE: Iteration: 126 | log-likelihood: -302.260888580875
#> EM - StMoE: Iteration: 127 | log-likelihood: -302.262269222598
#> EM - StMoE: Iteration: 128 | log-likelihood: -302.263598090208
#> EM - StMoE: Iteration: 129 | log-likelihood: -302.264877212588
#> EM - StMoE: Iteration: 130 | log-likelihood: -302.266108529644
#> EM - StMoE: Iteration: 131 | log-likelihood: -302.26729389785
#> EM - StMoE: Iteration: 132 | log-likelihood: -302.268435095155
#> EM - StMoE: Iteration: 133 | log-likelihood: -302.269533825348
#> EM - StMoE: Iteration: 134 | log-likelihood: -302.270591721985
#> EM - StMoE: Iteration: 135 | log-likelihood: -302.271610351937
#> EM - StMoE: Iteration: 136 | log-likelihood: -302.272591218634
#> EM - StMoE: Iteration: 137 | log-likelihood: -302.273535765038
#> EM - StMoE: Iteration: 138 | log-likelihood: -302.274445376409
#> EM - StMoE: Iteration: 139 | log-likelihood: -302.276048594329
#> EM - StMoE: Iteration: 140 | log-likelihood: -302.277295858768
#> EM - StMoE: Iteration: 141 | log-likelihood: -302.278329251585
#> EM - StMoE: Iteration: 142 | log-likelihood: -302.27922826416
#> EM - StMoE: Iteration: 143 | log-likelihood: -302.280037968947
#> EM - StMoE: Iteration: 144 | log-likelihood: -302.280784391465
#> EM - StMoE: Iteration: 145 | log-likelihood: -302.28148293074
#> EM - StMoE: Iteration: 146 | log-likelihood: -302.282142994437
#> EM - StMoE: Iteration: 147 | log-likelihood: -302.282770566065
#> EM - StMoE: Iteration: 148 | log-likelihood: -302.283369637877
#> EM - StMoE: Iteration: 149 | log-likelihood: -302.283943018484
#> EM - StMoE: Iteration: 150 | log-likelihood: -302.284492793652
#> EM - StMoE: Iteration: 151 | log-likelihood: -302.285020593249
#> EM - StMoE: Iteration: 152 | log-likelihood: -302.285527748826
#> EM - StMoE: Iteration: 153 | log-likelihood: -302.286015388739
#> EM - StMoE: Iteration: 154 | log-likelihood: -302.286484497098
#> EM - StMoE: Iteration: 155 | log-likelihood: -302.286935951393
#> EM - StMoE: Iteration: 156 | log-likelihood: -302.287370547269
#> EM - StMoE: Iteration: 157 | log-likelihood: -302.287789015395
#> EM - StMoE: Iteration: 158 | log-likelihood: -302.288192033309
#> EM - StMoE: Iteration: 159 | log-likelihood: -302.288580234002
#> EM - StMoE: Iteration: 160 | log-likelihood: -302.288954212308
#> EM - StMoE: Iteration: 161 | log-likelihood: -302.28931452978
#> EM - StMoE: Iteration: 162 | log-likelihood: -302.289661718499
#> EM - StMoE: Iteration: 163 | log-likelihood: -302.289996284107
#> EM - StMoE: Iteration: 164 | log-likelihood: -302.290318708259
#> EM - StMoE: Iteration: 165 | log-likelihood: -302.290629450648
#> EM - StMoE: Iteration: 166 | log-likelihood: -302.290928950694

stmoe$summary()
#> ------------------------------------------
#> Fitted Skew t Mixture-of-Experts model
#> ------------------------------------------
#> 
#> StMoE model with K = 2 experts:
#> 
#>  log-likelihood df       AIC       BIC      ICL
#>       -302.2909 12 -314.2909 -339.5786 -339.576
#> 
#> Clustering table (Number of observations in each expert):
#> 
#>   1   2 
#> 249 251 
#> 
#> Regression coefficients:
#> 
#>     Beta(k = 1) Beta(k = 2)
#> 1    0.06643398 -0.02736487
#> X^1  2.57061178 -2.64710637
#> 
#> Variances:
#> 
#>  Sigma2(k = 1) Sigma2(k = 2)
#>      0.1031365     0.6024446

stmoe$plot()
#> Warning in sqrt(stat$Vary): production de NaN

#> Warning in sqrt(stat$Vary): production de NaN

# Applicartion to a real data set

library(MASS)
data("mcycle")
x <- mcycle$times
y <- mcycle$accel

K <- 4 # Number of regressors/experts
p <- 2 # Order of the polynomial regression (regressors/experts)
q <- 1 # Order of the logistic regression (gating network)

stmoe <- emStMoE(X = x, Y = y, K = K, p = p, q = q, verbose = TRUE)
#> EM - StMoE: Iteration: 1 | log-likelihood: -599.970868260844
#> EM - StMoE: Iteration: 2 | log-likelihood: -584.761753783483
#> EM - StMoE: Iteration: 3 | log-likelihood: -584.739108683906
#> EM - StMoE: Iteration: 4 | log-likelihood: -583.152667091195
#> EM - StMoE: Iteration: 5 | log-likelihood: -577.01758775371
#> EM - StMoE: Iteration: 6 | log-likelihood: -570.545320839571
#> EM - StMoE: Iteration: 7 | log-likelihood: -566.102216660141
#> EM - StMoE: Iteration: 8 | log-likelihood: -564.005208184307
#> EM - StMoE: Iteration: 9 | log-likelihood: -563.473769874151
#> EM - StMoE: Iteration: 10 | log-likelihood: -563.371015164243
#> EM - StMoE: Iteration: 11 | log-likelihood: -563.325639042004
#> EM - StMoE: Iteration: 12 | log-likelihood: -563.260956368371
#> EM - StMoE: Iteration: 13 | log-likelihood: -563.160103139318
#> EM - StMoE: Iteration: 14 | log-likelihood: -563.036208961213
#> EM - StMoE: Iteration: 15 | log-likelihood: -562.929568309038
#> EM - StMoE: Iteration: 16 | log-likelihood: -562.873926288988
#> EM - StMoE: Iteration: 17 | log-likelihood: -562.863056340075
#> EM - StMoE: Iteration: 18 | log-likelihood: -562.872058840866
#> EM - StMoE: Iteration: 19 | log-likelihood: -562.884298969276
#> EM - StMoE: Iteration: 20 | log-likelihood: -562.892257042228
#> EM - StMoE: Iteration: 21 | log-likelihood: -562.893400819209
#> EM - StMoE: Iteration: 22 | log-likelihood: -562.886326886739
#> EM - StMoE: Iteration: 23 | log-likelihood: -562.869734547993
#> EM - StMoE: Iteration: 24 | log-likelihood: -562.843373338597
#> EM - StMoE: Iteration: 25 | log-likelihood: -562.806530223593
#> EM - StMoE: Iteration: 26 | log-likelihood: -562.759209213378
#> EM - StMoE: Iteration: 27 | log-likelihood: -562.701759556614
#> EM - StMoE: Iteration: 28 | log-likelihood: -562.637851562422
#> EM - StMoE: Iteration: 29 | log-likelihood: -562.578679951567
#> EM - StMoE: Iteration: 30 | log-likelihood: -562.544706088763
#> EM - StMoE: Iteration: 31 | log-likelihood: -562.547659760017
#> EM - StMoE: Iteration: 32 | log-likelihood: -562.573594841724
#> EM - StMoE: Iteration: 33 | log-likelihood: -562.606224655412
#> EM - StMoE: Iteration: 34 | log-likelihood: -562.639170956927
#> EM - StMoE: Iteration: 35 | log-likelihood: -562.670887429489
#> EM - StMoE: Iteration: 36 | log-likelihood: -562.700977889776
#> EM - StMoE: Iteration: 37 | log-likelihood: -562.729333904045
#> EM - StMoE: Iteration: 38 | log-likelihood: -562.75594302018
#> EM - StMoE: Iteration: 39 | log-likelihood: -562.780915483106
#> EM - StMoE: Iteration: 40 | log-likelihood: -562.804273764516
#> EM - StMoE: Iteration: 41 | log-likelihood: -562.826081748726
#> EM - StMoE: Iteration: 42 | log-likelihood: -562.846465069854
#> EM - StMoE: Iteration: 43 | log-likelihood: -562.865494990344
#> EM - StMoE: Iteration: 44 | log-likelihood: -562.883363535599
#> EM - StMoE: Iteration: 45 | log-likelihood: -562.899766649106
#> EM - StMoE: Iteration: 46 | log-likelihood: -562.915105887419
#> EM - StMoE: Iteration: 47 | log-likelihood: -562.929369415829
#> EM - StMoE: Iteration: 48 | log-likelihood: -562.942618350082
#> EM - StMoE: Iteration: 49 | log-likelihood: -562.954914681938
#> EM - StMoE: Iteration: 50 | log-likelihood: -562.966324704433
#> EM - StMoE: Iteration: 51 | log-likelihood: -562.976892924208
#> EM - StMoE: Iteration: 52 | log-likelihood: -562.986679129858
#> EM - StMoE: Iteration: 53 | log-likelihood: -562.995698141401
#> EM - StMoE: Iteration: 54 | log-likelihood: -563.004199322622
#> EM - StMoE: Iteration: 55 | log-likelihood: -563.011948719677
#> EM - StMoE: Iteration: 56 | log-likelihood: -563.019092394262
#> EM - StMoE: Iteration: 57 | log-likelihood: -563.025788220585
#> EM - StMoE: Iteration: 58 | log-likelihood: -563.032130750582
#> EM - StMoE: Iteration: 59 | log-likelihood: -563.038101658285
#> EM - StMoE: Iteration: 60 | log-likelihood: -563.043686700587
#> EM - StMoE: Iteration: 61 | log-likelihood: -563.048913316641
#> EM - StMoE: Iteration: 62 | log-likelihood: -563.053800034428
#> EM - StMoE: Iteration: 63 | log-likelihood: -563.058367081312
#> EM - StMoE: Iteration: 64 | log-likelihood: -563.062634411041
#> EM - StMoE: Iteration: 65 | log-likelihood: -563.066621029848
#> EM - StMoE: Iteration: 66 | log-likelihood: -563.070344865861
#> EM - StMoE: Iteration: 67 | log-likelihood: -563.073822774497
#> EM - StMoE: Iteration: 68 | log-likelihood: -563.077068884576
#> EM - StMoE: Iteration: 69 | log-likelihood: -563.080101318079
#> EM - StMoE: Iteration: 70 | log-likelihood: -563.082932976016
#> EM - StMoE: Iteration: 71 | log-likelihood: -563.085576456654
#> EM - StMoE: Iteration: 72 | log-likelihood: -563.088043769262
#> EM - StMoE: Iteration: 73 | log-likelihood: -563.090354748117
#> EM - StMoE: Iteration: 74 | log-likelihood: -563.092543476789
#> EM - StMoE: Iteration: 75 | log-likelihood: -563.094432674549
#> EM - StMoE: Iteration: 76 | log-likelihood: -563.09630477819
#> EM - StMoE: Iteration: 77 | log-likelihood: -563.098074257544
#> EM - StMoE: Iteration: 78 | log-likelihood: -563.099724441976
#> EM - StMoE: Iteration: 79 | log-likelihood: -563.101258071476
#> EM - StMoE: Iteration: 80 | log-likelihood: -563.102682505525
#> EM - StMoE: Iteration: 81 | log-likelihood: -563.104005588245
#> EM - StMoE: Iteration: 82 | log-likelihood: -563.105234621045
#> EM - StMoE: Iteration: 83 | log-likelihood: -563.106376189189
#> EM - StMoE: Iteration: 84 | log-likelihood: -563.107436197855
#> EM - StMoE: Iteration: 85 | log-likelihood: -563.108419942485
#> EM - StMoE: Iteration: 86 | log-likelihood: -563.109332171131
#> EM - StMoE: Iteration: 87 | log-likelihood: -563.110177132063
#> EM - StMoE: Iteration: 88 | log-likelihood: -563.11095860863
#> EM - StMoE: Iteration: 89 | log-likelihood: -563.11167994535
#> EM - StMoE: Iteration: 90 | log-likelihood: -563.112344067246
#> EM - StMoE: Iteration: 91 | log-likelihood: -563.112953493273
#> EM - StMoE: Iteration: 92 | log-likelihood: -563.113510345457

stmoe$summary()
#> ------------------------------------------
#> Fitted Skew t Mixture-of-Experts model
#> ------------------------------------------
#> 
#> StMoE model with K = 4 experts:
#> 
#>  log-likelihood df       AIC       BIC       ICL
#>       -563.1135 30 -593.1135 -636.4687 -636.4969
#> 
#> Clustering table (Number of observations in each expert):
#> 
#>  1  2  3  4 
#> 28 37 31 37 
#> 
#> Regression coefficients:
#> 
#>     Beta(k = 1) Beta(k = 2)  Beta(k = 3)  Beta(k = 4)
#> 1   -3.52358475  996.077085 -1616.483001 134.35786999
#> X^1  0.88184631 -104.419255    95.549943  -6.74970173
#> X^2 -0.08184845    2.446371    -1.386852   0.07092188
#> 
#> Variances:
#> 
#>  Sigma2(k = 1) Sigma2(k = 2) Sigma2(k = 3) Sigma2(k = 4)
#>       14.09186      448.3051      1404.488      1385.116

stmoe$plot()

References

Chamroukhi, F. 2017. “Skew-T Mixture of Experts.” Neurocomputing - Elsevier 266: 390–408. https://chamroukhi.com/papers/STMoE.pdf.

Chamroukhi, F. 2016a. “Robust Mixture of Experts Modeling Using the T-Distribution.” Neural Networks - Elsevier 79: 20–36. https://chamroukhi.com/papers/TMoE.pdf.

Chamroukhi, F. 2016b. “Skew-Normal Mixture of Experts.” In The International Joint Conference on Neural Networks (IJCNN). Vancouver, Canada. https://chamroukhi.com/papers/Chamroukhi-SNMoE-IJCNN2016.pdf.

Chamroukhi, F. 2015a. “Non-Normal Mixtures of Experts.” http://arxiv.org/pdf/1506.06707.pdf.

Chamroukhi, F. 2015b. “Statistical Learning of Latent Data Models for Complex Data Analysis.” Habilitation Thesis (HDR), Université de Toulon. https://chamroukhi.com/FChamroukhi-HDR.pdf.

Chamroukhi, F. 2010. “Hidden Process Regression for Curve Modeling, Classification and Tracking.” Ph.D. Thesis, Université de Technologie de Compiègne. https://chamroukhi.com/FChamroukhi-PhD.pdf.

Chamroukhi, F., A. Samé, G. Govaert, and P. Aknin. 2009. “Time Series Modeling by a Regression Approach Based on a Latent Process.” Neural Networks 22 (5-6): 593–602. https://chamroukhi.com/papers/Chamroukhi_Neural_Networks_2009.pdf.

Metadata

Version

0.1.1

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows