Description
Multivariate Inverse Gaussian Distribution.
Description
Provides utilities for estimation for the multivariate inverse Gaussian distribution of Minami (2003) <doi:10.1081/STA-120025379>, including random vector generation and explicit estimators of the location vector and scale matrix. The package implements kernel density estimators discussed in Belzile, Desgagnes, Genest and Ouimet (2024) <doi:10.48550/arXiv.2209.04757> for smoothing multivariate data on half-spaces.
README.md
Multivariate inverse Gaussian
This R package consists of utilities for multivariate inverse Gaussian (MIG) models with mean $\boldsymbol{\xi}$ and scale matrix $\boldsymbol{\Omega}$ defined over the halfspace ${\boldsymbol{x} \in \mathbb{R}^d: \boldsymbol{\beta}^\top\boldsymbol{x} > 0}$, including density evaluation and random number generation and kernel smoothing.
Distributions
mig
for the MIG distribution(rmig
for random number generation anddmig
for density)tellipt
(rtellipt
for random vector generation anddtellipt
the density) for truncated Student-$t$ or Gaussian distribution over the half space ${\boldsymbol{x}: \boldsymbol{\beta}^\top\boldsymbol{x}>\delta}$ for $\delta \geq 0$.fit_mig
to estimate the parameters of the MIG distribution via maximum likelihood (mle
) or the method of moments (mom
).
Kernel density estimation
mig_kdens_bandwidth
to estimate the bandwidth matrix minimizing the asymptotic mean integrated squared error (AMISE) or the leave-one-out likelihood cross validation, minimizing the Kullback--Leibler divergence. Theamise
estimators are estimated by drawing from amig
or truncated Gaussian vector via Monte Carlonormalrule_bandwidth
for the normal rule of Scott for the Gaussian kernelmig_kdens
for the kernel density estimatortellipt_kdens
for the truncated Gaussian kernel density estimator.