MyNixOS website logo
Description

Methods for Missing Data.

Supply functions for the creation and handling of missing data as well as tools to evaluate missing data methods. Nearly all possibilities of generating missing data discussed by Santos et al. (2019) <doi:10.1109/ACCESS.2019.2891360> and some additional are implemented. Functions are supplied to compare parameter estimates and imputed values to true values to evaluate missing data methods. Evaluations of these types are done, for example, by Cetin-Berber et al. (2019) <doi:10.1177/0013164418805532> and Kim et al. (2005) <doi:10.1093/bioinformatics/bth499>.

missMethods

CRANstatus R-CMD-check

The goal of missMethods is to make the creation and handling of missing data as well as the evaluation of missing data methods easier.

Installation

You can install the released version of missMethods from CRAN with:

install.packages("missMethods")

And the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("torockel/missMethods")

Usage

missMethods mainly provides three types of functions:

  • delete_ functions for generating missing values
  • impute_ functions for imputing missing values
  • evaluate_ functions for evaluating missing data methods

Run help(package = "missMethods") to see all functions. More details for the delete_ functions are given in a vignette (run vignette("Generating-missing-values")).

Example

This is a very basic workflow to generate missing values, impute the generated missing values and evaluate the imputation result:

library(missMethods)
set.seed(123)
ds_comp <- data.frame(X = rnorm(100), Y = rnorm(100))
ds_mis <- delete_MCAR(ds_comp, 0.3)
ds_imp <- impute_mean(ds_mis)
evaluate_imputed_values(ds_imp, ds_comp, "RMSE")
#> [1] 0.5328238
Metadata

Version

0.4.0

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows