MyNixOS website logo
Description

Bayesian Informative Hypotheses Evaluation Web Applications.

Researchers often have expectations about the relations between means of different groups or standardized regression coefficients; using informative hypothesis testing to incorporate these expectations into the analysis through order constraints increases statistical power Vanbrabant and Rosseel (2020) <doi:10.4324/9780429273872-14>. Another valuable tool, the Bayes factor, can evaluate evidence for multiple hypotheses without concerns about multiple testing, and can be used in Bayesian updating Hoijtink, Mulder, van Lissa & Gu (2019) <doi:10.1037/met0000201>. The 'bain' R package enables informative hypothesis testing using the Bayes factor. The 'mmibain' package provides 'shiny' web applications based on 'bain'. The RepliCrisis() function launches a 'shiny' card game to simulate the evaluation of replication studies while the mmibain() function launches a 'shiny' application to fit Bayesian informative hypotheses evaluation models from 'bain'.

mmibain

The Mighty Metrika Interface to BAIN (‘mmibain’) R package provides Shiny apps to explore basic functionality of the ‘bain’ package for BAyesian INformative Hypotheses Evaluation.

Installation

You can install the released version of ‘mmibain’ from CRAN:

install.packages("mmibain")

You can install the development version of ‘mmibain’ from GitHub with:

# install.packages("devtools")
devtools::install_github("mightymetrika/mmibain")

Play RepliCrisis

‘RepliCrisis’ is a Shiny app game that simulates evalutating replication studies based on the framework presented in Hoijtink, Mulder, van Lissa & Gu (2019). Follow these steps to play:

  • Set your sample size (for groups within study), difficulty, alpha level, and seed for reproducibility.
  • Define thresholds for the Bayes Factor and Posterior Model Probability to assess evidence in favor of the original study.
  • Conduct the original study to generate data and form a hypothesis.
  • Show diagnostics and descriptives to understand statistical results and hypotheses.
  • Conduct a replication study, using swap controls to match the original study’s results.
  • Run replication analysis to evaluate the results against the original hypothesis.
  • Start a new game by conducting a new original study.

To play, load ‘mmibain’ and call the RepliCrisis() function:

library(mmibain)
RepliCrisis()

mmibain Shiny App

The package also includes a Shiny app for running basic bain::bain() models:

  • Upload your data in CSV format.
  • Choose your modeling engine (lm, t_test, lavaan).
  • Input your model and any additional arguments.
  • Fit the model and input hypotheses for evaluation.
  • Adjust settings such as the fraction parameter, standardized regression coefficients, and confidence intervals.
  • Set a seed for reproducible results.
  • Run the Bayesian Informative Hypotheses Evaluation.

Launch the app with:

mmibain()

References

Hoijtink, H., Mulder, J., van Lissa, C., & Gu, X. (2019). A tutorial on testing hypotheses using the Bayes factor. Psychological methods, 24(5), 539–556. https://doi.org/10.1037/met0000201

Metadata

Version

0.2.0

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows