MyNixOS website logo
Description

Monitoring Overall Survival in Pivotal Trials in Indolent Cancers.

These guidelines are meant to provide a pragmatic, yet rigorous, help to drug developers and decision makers, since they are shaped by three fundamental ingredients: the clinically determined margin of detriment on OS that is unacceptably high (delta null); the benefit on OS that is plausible given the mechanism of action of the novel intervention (delta alt); and the quantity of information (i.e. survival events) it is feasible to accrue given the clinical and drug development setting. The proposed guidelines facilitate transparent discussions between stakeholders focusing on the risks of erroneous decisions and what might be an acceptable trade-off between power and the false positive error rate.

monitOS: Monitoring overall survival in pivotal trials in indolent cancers

CRANstatus

These guidelines are meant to provide a pragmatic, yet rigorous, help to drug developers and decision makers, since they are shaped by three fundamental ingredients: the clinically determined margin of detriment on OS that is unacceptably high (δnull); the benefit on OS that is plausible given the mechanism of action of the novel intervention (δalt); and the quantity of information (i.e. events, expected number of survival events, at primary and final analysis) it is feasible to accrue given the clinical and drug development setting. The proposed guidelines facilitate transparent discussions between stakeholders focusing on the risks of erroneous decisions and what might be an acceptable trade-off between power and the false positive error rate.

Monitoring guidelines assume that the hazard ratio (HR) can adequately summarize the size of the benefits and harms of the experimental intervention vs control on overall survival (OS). Furthermore, guidelines assume that an OS HR < 1 is consistent with a beneficial effect of the intervention on OS (and smaller OS HRs <1 indicate increased efficacy). For more details about how OS monitoring guidelines are formulated, please refer to arxiv paper.

Installation

You can install the development version of monitOS like so:

install.packages('monitOS')

Shiny app

The recommended way to use monitOS is to run its integrated shiny app. It can done simply call the wrapper function using:

monitOS::run_app()

The shiny app, as seen below, is designed to guide users through their trial designs.

Examples

These are basic examples on using monitOS:

library(monitOS)
# Example 01: OS monitoring guideline retrospectively applied to Motivating Example 1
# with delta null = 1.3, delta alt = 0.80, gamma_FA = 0.025 and  beta_PA = 0.10.
>>> bounds(events=c(60, 89, 110, 131, 178),
           power_int=0.9,  # βPA
           falsepos=0.025,  # γFA
           hr_null = 1.3,  # δnull
           hr_alt = 0.8,   # δalt
           rand_ratio = 1,
           hr_marg_benefit = NULL)

$lhr_null
[1] 0.2623643

$lhr_alt
[1] -0.2231436

$lhr_pos
[1]  0.107751640  0.048544837  0.021238743  0.000795809 -0.031446759

$summary
  Deaths OS HR threshold for positivity One-sided false positive error rate Level of 2-sided CI needed to rule out delta null
1     60                          1.114                               0.275                                                45
2     89                          1.050                               0.157                                                69
3    110                          1.021                               0.103                                                79
4    131                          1.001                               0.067                                                87
5    178                          0.969                               0.025                                                95
  Probability of meeting positivity threshold under delta alt Posterior probability the true OS HR exceeds delta null given the data
1                                                         0.9                                                                  0.275
2                                                         0.9                                                                  0.157
3                                                         0.9                                                                  0.103
4                                                         0.9                                                                  0.067
5                                                         0.9                                                                  0.025
  Predictive probability the OS HR estimate at Final Analysis does not exceed the positivity threshold
1                                                                                               25.394
2                                                                                               29.681
3                                                                                               32.744
4                                                                                               35.977
5                                                                                                   NA



# Example 02: OS monitoring guideline applied to Motivating Example 2
# with delta null = 4/3, delta alt = 0.7, gamma_FA = 0.20, beta_PA = 0.1, 
# randomization ratio 2 and 0.95 HR marginal benefit
>>> bounds(events=c(60, 89, 110, 131, 178),
           power_int=0.9,  # βPA
           falsepos=0.025,  # γFA
           hr_null = 1.3,  # δnull
           hr_alt = 0.8,   # δalt
           rand_ratio = 2, # rand_ratio
           hr_marg_benefit = 0.95)  # Marginal HR benefit
$lhr_null
[1] 0.2623643

$lhr_alt
[1] -0.2231436

$lhr_pos
[1]  0.12782380  0.06502550  0.03606302  0.01438001 -0.04926939

$summary
  Deaths OS HR threshold for positivity One-sided false positive error rate Level of 2-sided CI needed to rule out delta null
1     60                          1.136                               0.312                                                38
2     89                          1.067                               0.190                                                62
3    110                          1.037                               0.132                                                74
4    131                          1.014                               0.090                                                82
5    178                          0.952                               0.025                                                95
  Probability of meeting positivity threshold under delta alt Posterior probability the true OS HR exceeds delta null given the data
1                                                       0.900                                                                  0.301
2                                                       0.900                                                                  0.176
3                                                       0.900                                                                  0.118
4                                                       0.900                                                                  0.078
5                                                       0.863                                                                  0.019
  Predictive probability the OS HR estimate at Final Analysis does not exceed the positivity threshold
1                                                                                               19.978
2                                                                                               22.290
3                                                                                               23.453
4                                                                                               23.921
5                                                                                                   NA
  Probability of meeting positivity threshold under incremental benefit
1                                                                 0.743
2                                                                 0.698
3                                                                 0.667
4                                                                 0.638
5                                                                 0.505
Metadata

Version

0.1.5

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows