MyNixOS website logo
Description

Multi-Omic Differentially Expressed Gene-Gene Pairs.

Performs multi-omic differential network analysis by revealing differential interactions between molecular entities (genes, proteins, transcription factors, or other biomolecules) across the omic datasets provided. For each omic dataset, a differential network is constructed where links represent statistically significant differential interactions between entities. These networks are then integrated into a comprehensive visualization using distinct colors to distinguish interactions from different omic layers. This unified display allows interactive exploration of cross-omic patterns, such as differential interactions present at both transcript and protein levels. For each link, users can access differential statistical significance metrics (p values or adjusted p values, calculated via robust or traditional linear regression with interaction term) and differential regression plots. The methods implemented in this package are described in Sciacca et al. (2023) <doi:10.1093/bioinformatics/btad192>.

multiDEGGs

Differentially Expressed Gene-Gene pairs in multi omic data

The multiDEGGs package test for differential gene-gene correlations across different groups of samples in multi omic data.
Specific gene-gene interactions can be explored and gene-gene pair regression plots can be interactively shown.

Installation

Install from CRAN:
install.packages("multiDEGGs")

Install from Github:
devtools::install_github("elisabettasciacca/multiDEGGs")

Example

Load package and sample data
library(multiDEGGs) data("synthetic_metadata") data("synthetic_rnaseqData") data("synthetic_proteomicData") data("synthetic_OlinkData")

Generate differential networks
`assayData_list <- list("RNAseq" = synthetic_rnaseqData, "Proteomics" = synthetic_proteomicData, "Olink" = synthetic_OlinkData)

deggs_object <- get_diffNetworks(assayData = assayData_list, metadata = synthetic_metadata, category_variable = "response", regression_method = "lm", padj_method = "bonferroni", verbose = FALSE, show_progressBar = FALSE, cores = 2)`

Visualise interactively (will open a shiny interface)
View_diffNetworks(deggs_object)

Get a table listing all the significant interactions found in each category
get_multiOmics_diffNetworks(deggs_object, sig_threshold = 0.05)

Plot differential regression fits for a single interaction
plot_regressions(deggs_object, assayDataName = "RNAseq", gene_A = "MTOR", gene_B = "AKT2", legend_position = "bottomright")

              

Citation

citation("multiDEGGs")
Metadata

Version

1.0.0

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows