MyNixOS website logo
Description

Multivariate Data Analysis Laboratory.

An open-source implementation of latent variable methods and multivariate modeling tools. The focus is on exploratory analyses using dimensionality reduction methods including low dimensional embedding, classical multivariate statistical tools, and tools for enhanced interpretation of machine learning methods (i.e. intelligible models to provide important information for end-users). Target domains include extension to dedicated applications e.g. for manufacturing process modeling, spectroscopic analyses, and data mining.

NOTE: This R package focuses on the implementation of latent variable methods and multivariate modeling tools. The focus is on exploratory analyses using dimensionality reduction methods and classical multivariate statistical tools.

Quick demo

Fitting a PLS model:

library(mvdalab)
data(Penta)
mod1 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1], 
               ncomp = 3, method = "bidiagpls", 
               validation = "oob")

summary(mod1)
#> Call:
#> 
#> plsFit(formula = log.RAI ~ ., ncomp = 3, data = Penta[, -1], 
#>     method = "bidiagpls", scale = TRUE, 
#>     validation = "oob")
#> 
#> Coefficients:
#>        Estimate Bootstrap Error   't value'         bias 'bias t value'
#> L3  0.438131130      0.07813105  5.60764388 -0.056287765    -0.72042756
#> S3 -0.339839340      0.08368706 -4.06083517  0.044477379     0.53147262
#> P1 -0.210181974      0.06071820 -3.46159762  0.057955814     0.95450482
#> S1 -0.135884870      0.06997010 -1.94204192  0.019907955     0.28452089
#> P3  0.111249534      0.06854336  1.62305337  0.034862926     0.50862586
#> S2  0.089752422      0.04701730  1.90892350  0.006892843     0.14660228
#> L2  0.071367951      0.04526160  1.57678793 -0.019359275    -0.42771960
#> L4  0.069951677      0.07232330  0.96720806 -0.004522244    -0.06252818
#> L5  0.035696148      0.04552429  0.78411217  0.008591990     0.18873419
#> P4 -0.028238597      0.05462905 -0.51691543 -0.020000349    -0.36611199
#> P2 -0.025167765      0.06283351 -0.40054683 -0.012729431    -0.20258984
#> S4  0.020226747      0.06658432  0.30377644 -0.037592328    -0.56458231
#> L1  0.017465764      0.06489465  0.26914025 -0.006988723    -0.10769335
#> S5  0.010701880      0.04456740  0.24012801 -0.004024037    -0.09029106
#> P5 -0.002811084      0.04681625 -0.06004504  0.003525576     0.07530667
#> 
#> Fit Summary: 
#> 
#> Number of objects = 30
#> Number of predictor variables = 15
#> Method: bidiagpls
#> No. of bootstrap samples =  1000
#> Number of components considered
#> in above parameter estimates = 3
#> R2X = 0.228 0.389 0.485
#> R2Y = 0.691 0.824 0.874
#> Out-of-Bag R2 (per component) = 0.446 0.458 0.354
#> Out-of-Bag PRESS (per component) = 4.335 3.902 4.455
#> Out-of-Bag MSPRESS.632 (per component) = 0.335 0.263 0.286
#> Out-of-Bag RMSPRESS.632 (per component) = 0.578 0.512 0.535

PCA via NIPALS.

library(mvdalab)
my.nipals <- pca.nipals(iris[, 1:4], ncomps = 4, tol = 1e-08)
names(my.nipals)
#> [1] "Loadings"      "Scores"        "Loading.Space" "Score.Space"

my.nipals$Loadings
#>                     [,1]        [,2]        [,3]       [,4]
#> Sepal.Length  0.36138514  0.65659919 -0.58203416  0.3154592
#> Sepal.Width  -0.08452411  0.73015136  0.59793829 -0.3196944
#> Petal.Length  0.85667099 -0.17337204  0.07625627 -0.4798353
#> Petal.Width   0.35828937 -0.07548926  0.54579393  0.7536837
svd(scale(iris[, 1:4], scale = FALSE))$v
#>             [,1]        [,2]        [,3]       [,4]
#> [1,]  0.36138659 -0.65658877  0.58202985  0.3154872
#> [2,] -0.08452251 -0.73016143 -0.59791083 -0.3197231
#> [3,]  0.85667061  0.17337266 -0.07623608 -0.4798390
#> [4,]  0.35828920  0.07548102 -0.54583143  0.7536574

Traditional Multivariate Mean Vector Comparison.

library(mvdalab)
data(College)
dat1 <- College
#Generate a 'fake' difference of 15 units
dat2 <- College + matrix(rnorm(nrow(dat1) * ncol(dat1), mean = 15), 
        nrow = nrow(dat1), ncol = ncol(dat1))

Comparison <- MVComp(dat1, dat2, level = .95)
Comparison
#>   lower 95 % confidence upper 95 % confidence    Significance
#> 1             -47.66009              17.95686 Not Significant
#> 2             -19.69886             -10.07013     Significant
#> 3             -16.88621             -12.75947     Significant
Metadata

Version

1.7

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows