MyNixOS website logo
Description

ML Estimation for Multivariate Normal Data with Missing Values.

Finds the Maximum Likelihood (ML) Estimate of the mean vector and variance-covariance matrix for multivariate normal data with missing values.

mvnmle

mvnmle is to find the Maximum Likelihood (ML) Estimate of the mean vector and variance-covariance matrix for multivariate normal data with missing values.

Installation

You can install the released version of mvnmle from CRAN with:

install.packages("mvnmle")

and also, you can install the development version of mvnmle like so from GitHub:

require("remotes")
remotes::install_github("indenkun/mvnmle")

Note

This mvnmle package was taken over from a package maintainer that was ORPHANED and re-submitted to conform to the current CRAN policy.

The basic code is the same as in the previous 0.1-11.1 versions.

Kevin Gross, the previous package maintainer and author, has given me permission to change the maintainer.

The specific changes are as follows:

  • Changed to generate Rd documentation with Roxygen.
  • Function calls from other packages are now called use with ::.
  • Coding style was changed, e.g. inserting spaces before and after <- and =.
  • Because I use GitHub for code and bug management, I append these URLs to the DESCRIPTION.

The following changes are in response to a request from CRAN:

  • Changed DESCRIPTION notation to use Authors@R field.
  • Added text to always explain acronyms that ML and MLE.
  • Added doi and ISBN information to references.

No additional functionality will be added in the future. The goal is to maintain the package according to CRAN policies with the original code will work.

Licence

GPL (>= 2)

Metadata

Version

0.1-11.2

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows