MyNixOS website logo
Description

Unified Algorithm for Non-convex Penalized Estimation for Generalized Linear Models.

An efficient unified nonconvex penalized estimation algorithm for Gaussian (linear), binomial Logit (logistic), Poisson, multinomial Logit, and Cox proportional hazard regression models. The unified algorithm is implemented based on the convex concave procedure and the algorithm can be applied to most of the existing nonconvex penalties. The algorithm also supports convex penalty: least absolute shrinkage and selection operator (LASSO). Supported nonconvex penalties include smoothly clipped absolute deviation (SCAD), minimax concave penalty (MCP), truncated LASSO penalty (TLP), clipped LASSO (CLASSO), sparse ridge (SRIDGE), modified bridge (MBRIDGE) and modified log (MLOG). For high-dimensional data (data set with many variables), the algorithm selects relevant variables producing a parsimonious regression model. Kim, D., Lee, S. and Kwon, S. (2018) <arXiv:1811.05061>, Lee, S., Kwon, S. and Kim, Y. (2016) <doi:10.1016/j.csda.2015.08.019>, Kwon, S., Lee, S. and Kim, Y. (2015) <doi:10.1016/j.csda.2015.07.001>. (This research is funded by Julian Virtue Professorship from Center for Applied Research at Pepperdine Graziadio Business School and the National Research Foundation of Korea.)

Travis-CI Build Status

ncpen

ncpen package fits the generalized linear models with various nonconvex penalties. Supported regression models are Gaussian (linear), binomial Logit (logistic), multinomial Logit, Poisson and Cox proportional hazard. A unified algorithm is implemented based on the convex concave procedure and the algorithm can be applied to most of the existing nonconvex penalties. The algorithm also supports convex penalty: least absolute shrinkage and selection operator (LASSO). Supported nonconvex penalties include smoothly clipped absolute deviation (SCAD), minimax concave penalty (MCP), truncated LASSO penalty (TLP), clipped LASSO (CLASSO), sparse ridge (SRIDGE), modified bridge (MBRIDGE) and modified log (MLOG). This package accepts a design matrix X and vector of responses y, and produces the regularization path over a grid of values for the tuning parameter lambda. Also provides user-friendly processes for plotting, selecting tuning parameters using cross-validation or generalized information criterion (GIC), l2-regularization, penalty weights, standardization and intercept. For a data set with many variables (high-dimensional data), the algorithm selects relevant variables producing a parsimonious regression model.

Related research paper can be found at ncpen paper. A recent manual is avaialbe at ncpen manual and for an example use, see ncepn example.

(This research is funded by Julian Virtue Professorship from Center for Applied Research at Pepperdine Graziadio Business School and the National Research Foundation of Korea.)

Authors

Dongshin Kim, Sunghoon Kwon, Sangin Lee

References

Metadata

Version

1.0.0

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows