MyNixOS website logo
Description

Nested Cross-Validation with 'glmnet' and 'caret'.

Implements nested k*l-fold cross-validation for lasso and elastic-net regularised linear models via the 'glmnet' package and other machine learning models via the 'caret' package. Cross-validation of 'glmnet' alpha mixing parameter and embedded fast filter functions for feature selection are provided. Described as double cross-validation by Stone (1977) <doi:10.1111/j.2517-6161.1977.tb01603.x>. Also implemented is a method using outer CV to measure unbiased model performance metrics when fitting Bayesian linear and logistic regression shrinkage models using the horseshoe prior over parameters to encourage a sparse model as described by Piironen & Vehtari (2017) <doi:10.1214/17-EJS1337SI>.

nestedcv

CRAN_Status_Badge Downloads Downloads

Nested cross-validation (CV) for the glmnet and caret packages. With glmnet this includes cross-validation of elastic net alpha parameter. A number of feature selection filter functions (t-test, Wilcoxon test, ANOVA, Pearson/Spearman correlation, random forest, ReliefF) for feature selection are provided and can be embedded within the outer loop of the nested CV. Nested CV can be also be performed with the caret package giving access to the large number of prediction methods available in caret.

Installation

Install from CRAN

install.packages("nestedcv")

Install from Github

devtools::install_github("myles-lewis/nestedcv")

Example

In this example using iris dataset (multinomial, 3 classes), we fit a glmnet model, tuning both lambda and alpha with 10 x 10-fold nested CV.

library(nestedcv)
data(iris)
y <- iris$Species
x <- as.matrix(iris[, -5])

cores <- parallel::detectCores(logical = FALSE)  # detect physical cores

res <- nestcv.glmnet(y, x, family = "multinomial", cv.cores = cores)
summary(res)

Use summary() to see full information from the nested model fitting. coef() can be used to show the coefficients of the final fitted model. Filters can be used by setting the filterFUN argument. Options for the filter function are passed as a list through filter_options.

Output from the nested CV with glmnet can be plotted to show how deviance is affected by alpha and lambda.

plot_alphas(res)
plot_lambdas(res)

The tuning of lambda and alpha for each outer CV fold can be plotted. Here we inspect outer CV fold 1.

plot(res$outer_result[[1]]$cvafit)

ROC curves from left-out folds from both outer and inner CV can be plotted for binary comparisons (see vignette).

Nested CV can also be performed using the caret package framework. Here we use caret for tuning random forest using the ranger package.

res <- nestcv.train(y, x, method = "ranger", cv.cores = cores)
summary(res)
Metadata

Version

0.7.10

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows