MyNixOS website logo
Description

Probabilistic Time Series Forecasting.

Probabilistic time series forecasting via Natural Gradient Boosting for Probabilistic Prediction.

ngboostForecast

The goal of ngboostForecast is to provide a tools for probabilistic forecasting by using Python’s ngboost for R users.

Installation

You can install the released version of ngboostForecast from CRAN with:

install.packages("ngboostForecast")

And the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("Akai01/ngboostForecast")

Example

This is a basic example which shows you how to solve a common problem:

library(ngboostForecast)
#> Loading required package: reticulate
#> Registered S3 method overwritten by 'quantmod':
#>   method            from
#>   as.zoo.data.frame zoo

train = window(seatbelts, end = c(1983,12))

test = window(seatbelts, start = c(1984,1))

# without external variables with Ridge regression

model <- NGBforecast$new(Dist = Dist("LogNormal"),
                         Base = sklearner(module = "linear_model",
                                          class = "Ridge"),
                         Score = Scores("LogScore"),
                         natural_gradient = TRUE,
                         n_estimators = 200,
                         learning_rate =  0.1,
                         minibatch_frac = 1,
                         col_sample = 1,
                         verbose = TRUE,
                         verbose_eval = 5,
                         tol = 1e-5)

model$fit(y = train[,2], 
          seasonal = TRUE, 
          max_lag = 12, 
          early_stopping_rounds = 10L)

fc <- model$forecast(h = 12, level = c(99,95,90, 80, 70, 60), 
                      data_frame = FALSE)

autoplot(fc) + autolayer(test[,2])

Tuning

Set the parameters:

library(ngboostForecast)

dists <- list(Dist("Normal"))

base_learners <- list(sklearner(module = "tree", class = "DecisionTreeRegressor",
                                max_depth = 1),
                      sklearner(module = "tree", class = "DecisionTreeRegressor",
                                max_depth = 2),
                      sklearner(module = "tree", class = "DecisionTreeRegressor",
                                max_depth = 3),
                      sklearner(module = "tree", class = "DecisionTreeRegressor",
                                max_depth = 4),
                      sklearner(module = "tree", class = "DecisionTreeRegressor",
                                max_depth = 5),
                      sklearner(module = "tree", class = "DecisionTreeRegressor",
                                max_depth = 6),
                      sklearner(module = "tree", class = "DecisionTreeRegressor",
                                max_depth = 7))

scores <-  list(Scores("LogScore"))

model <- NGBforecastCV$new(Dist = dists,
                           Base = base_learners,
                           Score = scores,
                           natural_gradient = TRUE,
                           n_estimators = list(10, 100),
                           learning_rate = list(0.1, 0.2),
                           minibatch_frac = list(0.1, 1),
                           col_sample = list(0.3),
                           verbose = FALSE,
                           verbose_eval = 100,
                           tol = 1e-5)

Tune the model:

params <- model$tune(y = AirPassengers,
                     seasonal = TRUE,
                     max_lag = 12,
                     xreg = NULL,
                     early_stopping_rounds = NULL,
                     n_splits = 4L)

Best parameters:

params
#> $ngboost_best_params
#> $ngboost_best_params$Base
#> DecisionTreeRegressor(max_depth=7.0)
#> 
#> $ngboost_best_params$Dist
#> <class 'ngboost.distns.normal.Normal'>
#> 
#> $ngboost_best_params$Score
#> <class 'ngboost.scores.LogScore'>
#> 
#> $ngboost_best_params$col_sample
#> [1] 0.3
#> 
#> $ngboost_best_params$learning_rate
#> [1] 0.2
#> 
#> $ngboost_best_params$minibatch_frac
#> [1] 1
#> 
#> $ngboost_best_params$n_estimators
#> [1] 100
#> 
#> 
#> $ngb_forecast_params
#> $ngb_forecast_params$seasonal
#> [1] TRUE
#> 
#> $ngb_forecast_params$max_lag
#> [1] 12
#> 
#> $ngb_forecast_params$K
#> [1] 5
Metadata

Version

0.1.1

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows