MyNixOS website logo
Description

Cross-Entropy Optimisation of Noisy Functions.

Cross-Entropy optimisation of unconstrained deterministic and noisy functions illustrated in Rubinstein and Kroese (2004, ISBN: 978-1-4419-1940-3) through a highly flexible and customisable function which allows user to define custom variable domains, sampling distributions, updating and smoothing rules, and stopping criteria. Several built-in methods and settings make the package very easy-to-use under standard optimisation problems.

Cross-Entropy Optimisation of Noisy Functions

Presentation

The package noisyCE2 implements the cross-entropy algorithm (Rubinstein and Kroese, 2004) for the optimisation of unconstrained deterministic and noisy functions through a highly flexible and customisable function which allows user to define custom variable domains, sampling distributions, updating and smoothing rules, and stopping criteria. Several built-in methods and settings make the package very easy-to-use under standard optimisation problems.

Three examples

Negative paraboloid

The negative 4-dimensional paraboloid can be maximised as follows:

negparaboloid <- function(x) { -sum((x - (1:4))^2) }

sol <- noisyCE2(negparaboloid, domain = rep('real', 4))

Rosenbrock’s function

The 10-dimensional Rosenbrock’s function can be minimised as follows:

rosenbrock <- function(x) {
  sum(100 * (tail(x, -1) - head(x, -1)^2)^2 + (head(x, -1) - 1)^2)
}

newvar <- type_real(
  init = c(0, 2),
  smooth = list(
    quote(smooth_lin(x, xt, 1)),
    quote(smooth_dec(x, xt, 0.7, 5))
  )
)

sol <- noisyCE2(
  rosenbrock, domain = rep(list(newvar), 10),
  maximise = FALSE, N = 2000, maxiter = 10000
)

Noisy negative paraboloid

The negative 4-dimensional paraboloid with additive Gaussian noise can be maximised as follows:

noisyparaboloid <- function(x) { -sum((x - (1:4))^2) + rnorm(1) }

sol <- noisyCE2(noisyparaboloid, domain = rep('real', 4), stoprule = geweke(x))

where the stopping criterion based on the Geweke’s test has been adopted according to Bee et al. (2017).

References

Bee M., G. Espa, D. Giuliani, F. Santi (2017) “A cross-entropy approach to the estimation of generalised linear multilevel models”, Journal of Computational and Graphical Statistics, 26 (3), pp. 695-708. https://doi.org/10.1080/10618600.2016.1278003

Rubinstein, R. Y., and Kroese, D. P. (2004), The Cross-Entropy Method, Springer, New York. ISBN: 978-1-4419-1940-3

Metadata

Version

1.1.0

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows