MyNixOS website logo
Description

Weighted Average Ensemble without Training Labels.

It provides ensemble capabilities to supervised and unsupervised learning models predictions without using training labels. It decides the relative weights of the different models predictions by using best models predictions as response variable and rest of the mo. User can decide the best model, therefore, It provides freedom to user to ensemble models based on their design solutions.

nonet

nonet is a unified solution for weighted average ensemble in supervised and unsupervised learning environment. It is a novel approach to provide weighted average ensembled predictions without using labels from outcome or response variable for weight computation. In a nutshell, nonet can be used in two scenarios:

  • This approach can be used in the unsupervised environment where outcome labels not available.
  • This approach can be used to impute the missing values in the real-time scenarios in supervised and unsupervised environment because nonet does not require training labels to compute the weights for ensemble.

Getting Started:

one of the best way to start with this project is, have a look at vignettes. Vignettes provides clear idea about how nonet can contribute to ensemble different models all together.

nonet also available on Github Page

Installtion

This package can be downloaded from github using devtools:

  • devtools::install_github("GSLabDev/nonet")

nonet uses below mentioned R version & packages:-

Requirements

  • R (>= 3.5.1)

Used packages:

  • caret (>= 6.0.78),
  • dplyr,
  • randomForest,
  • ggplot2,
  • rlist (>= 0.4.6.1),
  • glmnet,
  • tidyverse,
  • e1071,
  • purrr,
  • pROC (>= 1.13.0),
  • rlang (>= 0.2.1),

Contribution

nonet welcomes you to contribute and suggest the improvement. Kindly raise the pull request for enhancement and raise the issue if you find any bugs.

for more details and support, one can reach out to us:

Metadata

Version

0.4.0

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows