Description
Tools for Building OLS Regression Models.
Description
Tools designed to make it easier for users, particularly beginner/intermediate R users to build ordinary least squares regression models. Includes comprehensive regression output, heteroskedasticity tests, collinearity diagnostics, residual diagnostics, measures of influence, model fit assessment and variable selection procedures.
README.md
olsrr
Overview
The olsrr package provides following tools for building OLS regression models using R:
- Comprehensive Regression Output
- Variable Selection Procedures
- Heteroskedasticity Tests
- Collinearity Diagnostics
- Model Fit Assessment
- Measures of Influence
- Residual Diagnostics
- Variable Contribution Assessment
Installation
# Install release version from CRAN
install.packages("olsrr")
# Install development version from GitHub
# install.packages("pak")
pak::pak("rsquaredacademy/olsrr")
Articles
- Quick Overview
- Variable Selection Methods
- Residual Diagnostics
- Heteroskedasticity
- Measures of Influence
- Collinearity Diagnostics
Usage
olsrr uses consistent prefix ols_
for easy tab completion. If you know how to write a formula
or build models using lm
, you will find olsrr very useful. Most of the functions use an object of class lm
as input. So you just need to build a model using lm
and then pass it onto the functions in olsrr. Below is a quick demo:
Regression
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_regress(model)
#> Model Summary
#> ---------------------------------------------------------------
#> R 0.914 RMSE 2.409
#> R-Squared 0.835 MSE 6.875
#> Adj. R-Squared 0.811 Coef. Var 13.051
#> Pred R-Squared 0.771 AIC 159.070
#> MAE 1.858 SBC 167.864
#> ---------------------------------------------------------------
#> RMSE: Root Mean Square Error
#> MSE: Mean Square Error
#> MAE: Mean Absolute Error
#> AIC: Akaike Information Criteria
#> SBC: Schwarz Bayesian Criteria
#>
#> ANOVA
#> --------------------------------------------------------------------
#> Sum of
#> Squares DF Mean Square F Sig.
#> --------------------------------------------------------------------
#> Regression 940.412 4 235.103 34.195 0.0000
#> Residual 185.635 27 6.875
#> Total 1126.047 31
#> --------------------------------------------------------------------
#>
#> Parameter Estimates
#> ----------------------------------------------------------------------------------------
#> model Beta Std. Error Std. Beta t Sig lower upper
#> ----------------------------------------------------------------------------------------
#> (Intercept) 27.330 8.639 3.164 0.004 9.604 45.055
#> disp 0.003 0.011 0.055 0.248 0.806 -0.019 0.025
#> hp -0.019 0.016 -0.212 -1.196 0.242 -0.051 0.013
#> wt -4.609 1.266 -0.748 -3.641 0.001 -7.206 -2.012
#> qsec 0.544 0.466 0.161 1.166 0.254 -0.413 1.501
#> ----------------------------------------------------------------------------------------
Getting Help
If you encounter a bug, please file a minimal reproducible example using reprex on github. For questions and clarifications, use StackOverflow.
Code of Conduct
Please note that the olsrr project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.