MyNixOS website logo
Description

Predict with 'tidymodels' Workflows in Databases.

Turn 'tidymodels' workflows into objects containing the sufficient sequential equations to perform predictions. These smaller objects allow for low dependency prediction locally or directly in databases.

orbital

R-CMD-check CRANstatus Codecov testcoverage Lifecycle:experimental

The goal of orbital is to enable running predictions of tidymodels workflows inside databases.

Installation

To install it, use:

install.packages("orbital")

You can install the development version of orbital from GitHub with:

# install.packages("devtools")
devtools::install_github("tidymodels/orbital")

Example

Given a fitted workflow

library(tidymodels)

rec_spec <- recipe(mpg ~ ., data = mtcars) |>
  step_normalize(all_numeric_predictors())

lm_spec <- linear_reg()

wf_spec <- workflow(rec_spec, lm_spec)

wf_fit <- fit(wf_spec, mtcars)

You can predict with it like normal.

predict(wf_fit, mtcars)
#> # A tibble: 32 × 1
#>    .pred
#>    <dbl>
#>  1  22.6
#>  2  22.1
#>  3  26.3
#>  4  21.2
#>  5  17.7
#>  6  20.4
#>  7  14.4
#>  8  22.5
#>  9  24.4
#> 10  18.7
#> # ℹ 22 more rows

We can get the same results by first creating an orbital object

library(orbital)
orbital_obj <- orbital(wf_fit)
orbital_obj
#> 
#> ── orbital Object ──────────────────────────────────────────────────────────────
#> • cyl = (cyl - 6.1875) / 1.785922
#> • disp = (disp - 230.7219) / 123.9387
#> • hp = (hp - 146.6875) / 68.56287
#> • drat = (drat - 3.596562) / 0.5346787
#> • wt = (wt - 3.21725) / 0.9784574
#> • qsec = (qsec - 17.84875) / 1.786943
#> • vs = (vs - 0.4375) / 0.5040161
#> • am = (am - 0.40625) / 0.4989909
#> • gear = (gear - 3.6875) / 0.7378041
#> • carb = (carb - 2.8125) / 1.6152
#> • .pred = 20.09062 + (cyl * -0.199024) + (disp * 1.652752) + (hp * -1.472 ...
#> ────────────────────────────────────────────────────────────────────────────────
#> 11 equations in total.

and then “predicting” with it using predict() to get the same results

predict(orbital_obj, as_tibble(mtcars))
#> # A tibble: 32 × 1
#>    .pred
#>    <dbl>
#>  1  22.6
#>  2  22.1
#>  3  26.3
#>  4  21.2
#>  5  17.7
#>  6  20.4
#>  7  14.4
#>  8  22.5
#>  9  24.4
#> 10  18.7
#> # ℹ 22 more rows

you can also predict in most SQL databases

library(DBI)
library(RSQLite)

con <- dbConnect(SQLite(), path = ":memory:")
db_mtcars <- copy_to(con, mtcars)

predict(orbital_obj, db_mtcars)
#> # Source:   SQL [?? x 1]
#> # Database: sqlite 3.46.0 []
#>    .pred
#>    <dbl>
#>  1  22.6
#>  2  22.1
#>  3  26.3
#>  4  21.2
#>  5  17.7
#>  6  20.4
#>  7  14.4
#>  8  22.5
#>  9  24.4
#> 10  18.7
#> # ℹ more rows

and spark databases

library(sparklyr)
#> 
#> Attaching package: 'sparklyr'
#> The following object is masked from 'package:purrr':
#> 
#>     invoke
#> The following object is masked from 'package:stats':
#> 
#>     filter
sc <- spark_connect(master = "local")

sc_mtcars <- copy_to(sc, mtcars, overwrite = TRUE)

predict(orbital_obj, sc_mtcars)
#> # Source:   SQL [?? x 1]
#> # Database: spark_connection
#>    .pred
#>    <dbl>
#>  1  22.6
#>  2  22.1
#>  3  26.3
#>  4  21.2
#>  5  17.7
#>  6  20.4
#>  7  14.4
#>  8  22.5
#>  9  24.4
#> 10  18.7
#> # ℹ more rows

Supported models and recipes steps

Full list of supported models and recipes steps can be found here: vignette("supported-models").

contributing

This project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.

Metadata

Version

0.2.0

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows