Description
Parametric Models for Survival Data.
Description
Executes simple parametric models for right-censored survival data. Functionality emulates capabilities in 'Minitab', including fitting right-censored data, assessing fit, plotting survival functions, and summary statistics and probabilities.
README.md
parmsurvfit
This package executes simple parametic models for right-censored survival data. Functionality emulates capabilities in Minitab, including fitting right-censored data, assessing fit, plotting survival functions, and summary statistics and probabilities.
Installation
You can install parmsurvfit from github with:
# install.packages("devtools")
devtools::install_github("apjacobson/parmsurvfit")
Examples
library(parmsurvfit)
Fitting data and assessing fit:
fit_data(data = firstdrink, dist = "weibull", time = "age")
#> Fitting of the distribution ' weibull ' on censored data by maximum likelihood
#> Parameters:
#> estimate
#> shape 2.536106
#> scale 19.684061
plot_density(data = firstdrink, dist = "weibull", time = "age")
plot_ppsurv(data = firstdrink, dist = "weibull", time = "age")
compute_AD(data = firstdrink, dist = "weibull", time = "age")
#> [1] 315.5693
Survival functions:
plot_surv(data = firstdrink, dist = "weibull", time = "age")
plot_haz(data = firstdrink, dist = "weibull", time = "age")
plot_cumhaz(data = firstdrink, dist = "weibull", time = "age")
Summary statistics and probabilities:
surv_prob(data = firstdrink, dist = "weibull", x = 30, lower.tail = F, time = "age")
#> P(T > 30) = 0.05439142
surv_summary(data = firstdrink, dist = "weibull", time = "age")
#> shape 2.536106
#> scale 19.68406
#> Log Liklihood -3170.779
#> AIC 6345.557
#> BIC 6355.373
#> Mean 17.47135
#> StDev 7.380763
#> First Quantile 12.04374
#> Median 17.03536
#> Third Quantile 22.38974