MyNixOS website logo
Description

Partial Least Squares Regression for Cox Models and Related Techniques.

Provides Partial least squares Regression and various regular, sparse or kernel, techniques for fitting Cox models in high dimensional settings <doi:10.1093/bioinformatics/btu660>, Bastien, P., Bertrand, F., Meyer N., Maumy-Bertrand, M. (2015), Deviance residuals-based sparse PLS and sparse kernel PLS regression for censored data, Bioinformatics, 31(3):397-404. Cross validation criteria were studied in <arXiv:1810.02962>, Bertrand, F., Bastien, Ph. and Maumy-Bertrand, M. (2018), Cross validating extensions of kernel, sparse or regular partial least squares regression models to censored data.

plsRcox

plsRcox, Cox-Models in a High Dimensional Setting in R

Frédéric Bertrand and Myriam Maumy-Bertrand

Lifecycle: stable Project Status: Active – The project has reached a stable, usable state and is being actively developed. R-CMD-check Codecov test coverage CRAN status CRAN RStudio mirror downloads GitHub Repo stars DOI

The goal of plsRcox is provide Cox models in a high dimensional setting in R.

plsRcox implements partial least squares Regression and various regular, sparse or kernel, techniques for fitting Cox models in high dimensional settings Bastien, P., Bertrand, F., Meyer N., Maumy-Bertrand, M. (2015), Deviance residuals-based sparse PLS and sparse kernel PLS regression for censored data, Bioinformatics, 31(3):397-404. Cross validation criteria were studied in [<arXiv:1810.02962](https://arxiv.org/abs/1810.01005), Bertrand, F., Bastien, Ph. and Maumy-Bertrand, M. (2018), Cross validating extensions of kernel, sparse or regular partial least squares regression models to censored data.

The package was presented at the User2014! conference. Frédéric Bertrand, Philippe Bastien, Nicolas Meyer and Myriam Bertrand (2014). "plsRcox, Cox-Models in a high dimensional setting in R", book of abstracts, User2014!, Los Angeles, page 177, http://user2014.r-project.org/abstracts/posters/177_Bertrand.pdf.

The plsRcox package contains an original allelotyping dataset from "Allelotyping identification of genomic alterations in rectal chromosomally unstable tumors without preoperative treatment", Benoît Romain, Agnès Neuville, Nicolas Meyer, Cécile Brigand, Serge Rohr, Anne Schneider, Marie-Pierre Gaub and Dominique Guenot (2010), BMC Cancer, 10:561, https://doi.org/10.1186/1471-2407-10-561.

Support for parallel computation and GPU is being developped.

The package provides several modelling techniques related to penalized Cox models or extensions of partial least squares to Cox models. The first two were new algorithms.

  • coxsplsDR and cv.coxsplsDR (Philippe Bastien, Frederic Bertrand, Nicolas Meyer, and Myriam Maumy-Bertrand (2015), "Deviance residuals-based sparse PLS and sparse kernel PLS regression for censored data", Bioinformatics, 31(3):397-404, https://doi.org/10.1093/bioinformatics/btu660),

  • coxDKsplsDR and cv.coxDKsplsDR (Philippe Bastien, Frederic Bertrand, Nicolas Meyer, and Myriam Maumy-Bertrand (2015), "Deviance residuals-based sparse PLS and sparse kernel PLS regression for censored data", Bioinformatics, 31(3):397-404, https://doi.org/10.1093/bioinformatics/btu660),

  • coxDKplsDR and cv.coxDKplsDR (Philippe Bastien (2008), "Deviance residuals based PLS regression for censored data in high dimensional setting", Chemometrics and Intelligent Laboratory Systems, 91:78–86, https://doi.org/10.1016/j.chemolab.2007.09.009),

  • coxpls and cv.coxpls (Nguyen, D.V., Rocke, D.M. (2002), "Partial least squares proportional hazard regression for application to DNA microarray survival data", Bioinformatics, 18(12):1625–1632),

  • coxplsDR and cv.coxplsDR (Philippe Bastien (2008), "Deviance residuals based PLS regression for censored data in high dimensional setting", Chemometrics and Intelligent Laboratory Systems, 91:78–86, https://doi.org/10.1016/j.chemolab.2007.09.009),

  • DKplsRcox,

  • larsDR and cv.larsDR (Segal, M.R. (2006), "Microarray Gene Expression Data with Linked Survival Phenotypes: Diffuse large-B- Cell Lymphoma Revisited", Biostatistics, 7:268-285, https://doi.org/10.1093/biostatistics/kxj006),

  • plsRcox and cv.plsRcox (Philippe Bastien, Vincenzo Esposito Vinzi, and Michel Tenenhaus (2005), "PLS generalised linear regression", Computational Statistics & Data Analysis, 48(1):17–46, https://doi.org/10.1016/j.csda.2004.02.005),

  • autoplsRcox and cv.autoplsRcox (Philippe Bastien, Vincenzo Esposito Vinzi, and Michel Tenenhaus (2005), "PLS generalised linear regression", Computational Statistics & Data Analysis, 48(1):17–46, https://doi.org/10.1016/j.csda.2004.02.005),

Performance comparisons.

Example of biplot of data.

This website and these examples were created by F. Bertrand and M. Maumy-Bertrand.

Installation

You can install the released version of plsRcox from CRAN with:

install.packages("plsRcox")

You can install the development version of plsRcox from github with:

devtools::install_github("fbertran/plsRcox")

Example

The original allelotyping dataset

library(plsRcox)
data(micro.censure)
Y_train_micro <- micro.censure$survyear[1:80]
C_train_micro <- micro.censure$DC[1:80]
Y_test_micro <- micro.censure$survyear[81:117]
C_test_micro <- micro.censure$DC[81:117]

data(Xmicro.censure_compl_imp)
X_train_micro <- apply((as.matrix(Xmicro.censure_compl_imp)),FUN="as.numeric",MARGIN=2)[1:80,]
X_train_micro_df <- data.frame(X_train_micro)

Compute deviance residuals with some options.

DR_coxph(Y_train_micro,C_train_micro,plot=TRUE)
plot of chunk devianceresiduals
#>           1           2           3           4           5           6 
#> -1.48432960 -0.54695398 -0.23145502 -0.34003013 -0.97633722 -0.38667660 
#>           7           8           9          10          11          12 
#> -0.38667660  1.57418914 -0.54695398 -0.15811388  2.10405254 -0.23145502 
#>          13          14          15          16          17          18 
#> -0.38667660 -1.09692040 -0.15811388 -0.15811388 -0.54695398 -0.38667660 
#>          19          20          21          22          23          24 
#>  0.65978609 -1.09692040 -0.43627414 -0.28961087 -0.38667660 -0.97633722 
#>          25          26          27          28          29          30 
#> -1.09692040 -0.15811388 -0.43627414 -0.43627414 -0.38667660 -0.23145502 
#>          31          32          33          34          35          36 
#>  2.30072697 -0.49023986 -0.54695398 -0.73444882  1.31082939 -0.97633722 
#>          37          38          39          40          41          42 
#>  1.70134282 -0.54695398 -0.15811388  1.07714870 -0.15811388 -0.49023986 
#>          43          44          45          46          47          48 
#> -0.34003013 -0.97633722 -0.15811388 -0.91410465 -1.09692040 -0.43627414 
#>          49          50          51          52          53          54 
#> -0.38667660 -0.09836581 -0.79392956  0.46851068 -0.34003013  1.95366297 
#>          55          56          57          58          59          60 
#>  2.60558118 -0.54695398 -1.09692040 -0.15811388 -0.49023986 -0.97633722 
#>          61          62          63          64          65          66 
#> -0.28961087  1.44879795  1.82660327 -0.38667660  0.96936094 -0.15811388 
#>          67          68          69          70          71          72 
#> -0.43627414 -0.49023986  1.18850436 -0.97633722 -0.97633722  0.86322194 
#>          73          74          75          76          77          78 
#> -0.43627414 -0.49023986 -0.38667660  0.76231394 -0.97633722 -0.43627414 
#>          79          80 
#> -0.54695398 -0.43627414
DR_coxph(Y_train_micro,C_train_micro,scaleY=FALSE,plot=TRUE)
plot of chunk devianceresiduals2
#>           1           2           3           4           5           6 
#> -1.48432960 -0.54695398 -0.23145502 -0.34003013 -0.97633722 -0.38667660 
#>           7           8           9          10          11          12 
#> -0.38667660  1.57418914 -0.54695398 -0.15811388  2.10405254 -0.23145502 
#>          13          14          15          16          17          18 
#> -0.38667660 -1.09692040 -0.15811388 -0.15811388 -0.54695398 -0.38667660 
#>          19          20          21          22          23          24 
#>  0.65978609 -1.09692040 -0.43627414 -0.28961087 -0.38667660 -0.97633722 
#>          25          26          27          28          29          30 
#> -1.09692040 -0.15811388 -0.43627414 -0.43627414 -0.38667660 -0.23145502 
#>          31          32          33          34          35          36 
#>  2.30072697 -0.49023986 -0.54695398 -0.73444882  1.31082939 -0.97633722 
#>          37          38          39          40          41          42 
#>  1.70134282 -0.54695398 -0.15811388  1.07714870 -0.15811388 -0.49023986 
#>          43          44          45          46          47          48 
#> -0.34003013 -0.97633722 -0.15811388 -0.91410465 -1.09692040 -0.43627414 
#>          49          50          51          52          53          54 
#> -0.38667660 -0.09836581 -0.79392956  0.46851068 -0.34003013  1.95366297 
#>          55          56          57          58          59          60 
#>  2.60558118 -0.54695398 -1.09692040 -0.15811388 -0.49023986 -0.97633722 
#>          61          62          63          64          65          66 
#> -0.28961087  1.44879795  1.82660327 -0.38667660  0.96936094 -0.15811388 
#>          67          68          69          70          71          72 
#> -0.43627414 -0.49023986  1.18850436 -0.97633722 -0.97633722  0.86322194 
#>          73          74          75          76          77          78 
#> -0.43627414 -0.49023986 -0.38667660  0.76231394 -0.97633722 -0.43627414 
#>          79          80 
#> -0.54695398 -0.43627414
DR_coxph(Y_train_micro,C_train_micro,scaleY=TRUE,plot=TRUE)
plot of chunk devianceresiduals3
#>           1           2           3           4           5           6 
#> -1.48432960 -0.54695398 -0.23145502 -0.34003013 -0.97633722 -0.38667660 
#>           7           8           9          10          11          12 
#> -0.38667660  1.57418914 -0.54695398 -0.15811388  2.10405254 -0.23145502 
#>          13          14          15          16          17          18 
#> -0.38667660 -1.09692040 -0.15811388 -0.15811388 -0.54695398 -0.38667660 
#>          19          20          21          22          23          24 
#>  0.65978609 -1.09692040 -0.43627414 -0.28961087 -0.38667660 -0.97633722 
#>          25          26          27          28          29          30 
#> -1.09692040 -0.15811388 -0.43627414 -0.43627414 -0.38667660 -0.23145502 
#>          31          32          33          34          35          36 
#>  2.30072697 -0.49023986 -0.54695398 -0.73444882  1.31082939 -0.97633722 
#>          37          38          39          40          41          42 
#>  1.70134282 -0.54695398 -0.15811388  1.07714870 -0.15811388 -0.49023986 
#>          43          44          45          46          47          48 
#> -0.34003013 -0.97633722 -0.15811388 -0.91410465 -1.09692040 -0.43627414 
#>          49          50          51          52          53          54 
#> -0.38667660 -0.09836581 -0.79392956  0.46851068 -0.34003013  1.95366297 
#>          55          56          57          58          59          60 
#>  2.60558118 -0.54695398 -1.09692040 -0.15811388 -0.49023986 -0.97633722 
#>          61          62          63          64          65          66 
#> -0.28961087  1.44879795  1.82660327 -0.38667660  0.96936094 -0.15811388 
#>          67          68          69          70          71          72 
#> -0.43627414 -0.49023986  1.18850436 -0.97633722 -0.97633722  0.86322194 
#>          73          74          75          76          77          78 
#> -0.43627414 -0.49023986 -0.38667660  0.76231394 -0.97633722 -0.43627414 
#>          79          80 
#> -0.54695398 -0.43627414

coxsplsDR

(cox_splsDR_fit=coxsplsDR(X_train_micro,Y_train_micro,C_train_micro,ncomp=6,eta=.5))
#> Call:
#> coxph(formula = YCsurv ~ ., data = tt_splsDR)
#> 
#>         coef exp(coef) se(coef)     z        p
#> dim.1 0.8093    2.2462   0.2029 3.989 6.63e-05
#> dim.2 0.9295    2.5333   0.2939 3.163  0.00156
#> dim.3 0.9968    2.7096   0.4190 2.379  0.01736
#> dim.4 0.9705    2.6391   0.3793 2.558  0.01052
#> dim.5 0.2162    1.2413   0.2811 0.769  0.44192
#> dim.6 0.4380    1.5496   0.3608 1.214  0.22473
#> 
#> Likelihood ratio test=55.06  on 6 df, p=4.51e-10
#> n= 80, number of events= 17

(cox_splsDR_fit2=coxsplsDR(~X_train_micro,Y_train_micro,C_train_micro,ncomp=6,eta=.5,trace=TRUE))
#> Error in model.matrix(mt0, mf0, , contrasts.arg = contrasts.arg): l'argument "contrasts.arg" est manquant, avec aucune valeur par défaut

(cox_splsDR_fit3=coxsplsDR(~.,Y_train_micro,C_train_micro,ncomp=6,
dataXplan=X_train_micro_df,eta=.5))
#> Error in model.matrix(mt0, mf0, , contrasts.arg = contrasts.arg): l'argument "contrasts.arg" est manquant, avec aucune valeur par défaut

rm(cox_splsDR_fit,cox_splsDR_fit2,cox_splsDR_fit3)
#> Warning in rm(cox_splsDR_fit, cox_splsDR_fit2, cox_splsDR_fit3): objet
#> 'cox_splsDR_fit2' introuvable
#> Warning in rm(cox_splsDR_fit, cox_splsDR_fit2, cox_splsDR_fit3): objet
#> 'cox_splsDR_fit3' introuvable

cv.coxsplsDR

set.seed(123456)

(cv.coxsplsDR.res=cv.coxsplsDR(list(x=X_train_micro,time=Y_train_micro, status=C_train_micro),nt=10,eta=.1))
#> CV Fold 1 
#> CV Fold 2 
#> CV Fold 3 
#> CV Fold 4 
#> CV Fold 5
plot of chunk cvcoxsplsDR
#> $nt
#> [1] 10
#> 
#> $cv.error10
#>  [1] 0.5000000 0.6786893 0.6913293 0.6485690 0.6656184 0.6591497 0.6733976
#>  [8] 0.6252317 0.6388320 0.6592004 0.6589521
#> 
#> $cv.se10
#>  [1] 0.00000000 0.04017423 0.02726346 0.03897730 0.03874068 0.04042522 0.03952962
#>  [8] 0.04645295 0.04782038 0.05168926 0.05259748
#> 
#> $folds
#> $folds$`1`
#>  [1] 60  3  2 14 77  6 50  4 72 32 22  1 41 21 63 25
#> 
#> $folds$`2`
#>  [1] 42 67 65 15 73 48 57 26  7 13 31 53  5 27 37 64
#> 
#> $folds$`3`
#>  [1] 71 23 56 35 75 29 30 18 62 44 12 33 68 49 43 55
#> 
#> $folds$`4`
#>  [1] 54 76 24 16 34 66  9 11 69 40 70 36 39  8 19 20
#> 
#> $folds$`5`
#>  [1] 74 38 46 80 47 78 10 45 51 28 61 79 58 17 52 59
#> 
#> 
#> $lambda.min10
#> [1] 2
#> 
#> $lambda.1se10
#> [1] 0
#> 
#> $nzb
#>  [1]  0 34 40 40 40 40 40 40 40 40 40

coxDKsplsDR

(cox_DKsplsDR_fit=coxDKsplsDR(X_train_micro,Y_train_micro,C_train_micro,ncomp=6, validation="CV",eta=.5))
#> Kernel :  rbfdot 
#> Estimated_sigma  0.0122308
#> Call:
#> coxph(formula = YCsurv ~ ., data = tt_DKsplsDR)
#> 
#>            coef exp(coef)  se(coef)     z       p
#> dim.1 3.633e+00 3.783e+01 1.245e+00 2.918 0.00352
#> dim.2 9.905e+00 2.003e+04 3.297e+00 3.004 0.00266
#> dim.3 6.491e+00 6.589e+02 2.575e+00 2.521 0.01170
#> dim.4 1.465e+01 2.308e+06 4.848e+00 3.022 0.00251
#> dim.5 6.103e+00 4.473e+02 2.757e+00 2.213 0.02687
#> dim.6 1.249e+01 2.664e+05 4.980e+00 2.508 0.01212
#> 
#> Likelihood ratio test=69.55  on 6 df, p=5.067e-13
#> n= 80, number of events= 17

(cox_DKsplsDR_fit=coxDKsplsDR(~X_train_micro,Y_train_micro,C_train_micro,ncomp=6, validation="CV",eta=.5))
#> Error in model.matrix(mt0, mf0, , contrasts.arg = contrasts.arg): l'argument "contrasts.arg" est manquant, avec aucune valeur par défaut

(cox_DKsplsDR_fit=coxDKsplsDR(~.,Y_train_micro,C_train_micro,ncomp=6,
validation="CV",dataXplan=data.frame(X_train_micro),eta=.5))
#> Error in model.matrix(mt0, mf0, , contrasts.arg = contrasts.arg): l'argument "contrasts.arg" est manquant, avec aucune valeur par défaut

rm(cox_DKsplsDR_fit)

cv.coxsplsDR

set.seed(123456)

(cv.coxDKsplsDR.res=cv.coxDKsplsDR(list(x=X_train_micro,time=Y_train_micro, status=C_train_micro),nt=10,eta=.1))
#> Kernel :  rbfdot 
#> Estimated_sigma  0.01257168 
#> CV Fold 1 
#> Kernel :  rbfdot 
#> Estimated_sigma  0.01198263 
#> CV Fold 2 
#> Kernel :  rbfdot 
#> Estimated_sigma  0.01156809 
#> CV Fold 3 
#> Kernel :  rbfdot 
#> Estimated_sigma  0.01287851 
#> CV Fold 4 
#> Kernel :  rbfdot 
#> Estimated_sigma  0.01127231 
#> CV Fold 5
plot of chunk cvcoxDKsplsDR
#> $nt
#> [1] 10
#> 
#> $cv.error10
#>  [1] 0.5000000 0.6381540 0.6963262 0.6537039 0.6204813 0.6886401 0.6632860
#>  [8] 0.6349883 0.6762113 0.6261072 0.6087014
#> 
#> $cv.se10
#>  [1] 0.00000000 0.03036225 0.02912723 0.04020941 0.03577022 0.03542745 0.03283778
#>  [8] 0.04532447 0.03390654 0.02968504 0.03306444
#> 
#> $folds
#> $folds$`1`
#>  [1] 60  3  2 14 77  6 50  4 72 32 22  1 41 21 63 25
#> 
#> $folds$`2`
#>  [1] 42 67 65 15 73 48 57 26  7 13 31 53  5 27 37 64
#> 
#> $folds$`3`
#>  [1] 71 23 56 35 75 29 30 18 62 44 12 33 68 49 43 55
#> 
#> $folds$`4`
#>  [1] 54 76 24 16 34 66  9 11 69 40 70 36 39  8 19 20
#> 
#> $folds$`5`
#>  [1] 74 38 46 80 47 78 10 45 51 28 61 79 58 17 52 59
#> 
#> 
#> $lambda.min10
#> [1] 2
#> 
#> $lambda.1se10
#> [1] 0
#> 
#> $nzb
#>  [1]  0 52 61 64 64 64 64 64 64 64 64

plsRcox

plsRcox(X_train_micro,time=Y_train_micro,event=C_train_micro,nt=5)
#> ____************************************************____
#> ____Component____ 1 ____
#> ____Component____ 2 ____
#> ____Component____ 3 ____
#> ____Component____ 4 ____
#> ____Component____ 5 ____
#> ____Predicting X without NA neither in X nor in Y____
#> ****________________________________________________****
#> Number of required components:
#> [1] 5
#> Number of successfully computed components:
#> [1] 5
#> Coefficients:
#>                [,1]
#> D18S61   0.68964919
#> D17S794 -1.14362392
#> D13S173  1.37632457
#> D20S107  4.96128745
#> TP53     1.68453950
#> D9S171  -1.46691252
#> D8S264   0.66710776
#> D5S346  -4.61338196
#> D22S928 -1.82005524
#> D18S53   0.79853646
#> D1S225  -1.46234986
#> D3S1282 -1.67925042
#> D15S127  3.92225537
#> D1S305  -2.29680161
#> D1S207   2.02539691
#> D2S138  -3.48975878
#> D16S422 -2.92189625
#> D9S179  -0.59484679
#> D10S191 -1.30136747
#> D4S394   1.34265359
#> D1S197  -0.75014044
#> D6S264   1.32746604
#> D14S65  -3.20882866
#> D17S790  0.55427680
#> D5S430   3.40654627
#> D3S1283  2.12510239
#> D4S414   2.73619967
#> D8S283   0.71955323
#> D11S916  1.45026508
#> D2S159   0.90293134
#> D16S408 -0.59719901
#> D6S275  -1.02204186
#> D10S192  1.14220367
#> sexe     0.67314561
#> Agediag  0.04908478
#> Siege   -0.41985924
#> T        2.70581463
#> N        2.47039973
#> M       -4.53213922
#> STADE    0.48221697
#> Information criteria and Fit statistics:
#>                 AIC       BIC
#> Nb_Comp_0 112.87990 112.87990
#> Nb_Comp_1  85.11075  87.49278
#> Nb_Comp_2  75.49537  80.25942
#> Nb_Comp_3  68.45852  75.60460
#> Nb_Comp_4  63.09284  72.62094
#> Nb_Comp_5  55.30567  67.21581

plsRcox(~X_train_micro,time=Y_train_micro,event=C_train_micro,nt=5)
#> Error in model.matrix(mt0, mf0, contrasts.arg = contrasts.arg): l'argument "contrasts.arg" est manquant, avec aucune valeur par défaut

plsRcox(Xplan=X_train_micro,time=Y_train_micro,event=C_train_micro,nt=5,sparse=TRUE, alpha.pvals.expli=.15)
#> ____************************************************____
#> ____Component____ 1 ____
#> ____Component____ 2 ____
#> ____Component____ 3 ____
#> Warning : 25 < 10^{-12}
#> Warning only 3 components could thus be extracted
#> ____Predicting X without NA neither in X nor in Y____
#> ****________________________________________________****
#> Number of required components:
#> [1] 5
#> Number of successfully computed components:
#> [1] 3
#> Coefficients:
#>                [,1]
#> D18S61   0.00000000
#> D17S794  0.00000000
#> D13S173  0.00000000
#> D20S107  2.22871454
#> TP53     0.00000000
#> D9S171   0.00000000
#> D8S264   0.00000000
#> D5S346  -1.20298526
#> D22S928  0.00000000
#> D18S53   0.00000000
#> D1S225  -1.29459798
#> D3S1282 -1.99426291
#> D15S127  1.39645601
#> D1S305   0.00000000
#> D1S207   1.25164327
#> D2S138  -1.65740160
#> D16S422  0.00000000
#> D9S179   0.00000000
#> D10S191 -1.25360805
#> D4S394   0.00000000
#> D1S197   0.00000000
#> D6S264   0.00000000
#> D14S65  -1.33587373
#> D17S790  0.00000000
#> D5S430   1.72799213
#> D3S1283  0.00000000
#> D4S414   1.03558702
#> D8S283   0.00000000
#> D11S916  0.00000000
#> D2S159   0.00000000
#> D16S408 -1.75748257
#> D6S275   0.00000000
#> D10S192  0.00000000
#> sexe     0.00000000
#> Agediag  0.05075304
#> Siege    0.00000000
#> T        1.36569407
#> N        1.27485618
#> M       -1.17682617
#> STADE   -0.65106093
#> Information criteria and Fit statistics:
#>                 AIC       BIC
#> Nb_Comp_0 112.87990 112.87990
#> Nb_Comp_1  85.54313  87.92516
#> Nb_Comp_2  75.16125  79.92530
#> Nb_Comp_3  73.63097  80.77705

plsRcox(Xplan=~X_train_micro,time=Y_train_micro,event=C_train_micro,nt=5,sparse=TRUE, alpha.pvals.expli=.15)
#> Error in model.matrix(mt0, mf0, contrasts.arg = contrasts.arg): l'argument "contrasts.arg" est manquant, avec aucune valeur par défaut

cv.plsRcox

set.seed(123456)

(cv.plsRcox.res=cv.plsRcox(list(x=X_train_micro,time=Y_train_micro,status=C_train_micro),nt=10,verbose = FALSE))
plot of chunk cvplsRcox
#> $nt
#> [1] 10
#> 
#> $cv.error5
#>  [1] 0.5000000 0.9674493 0.8840340 0.8881565 0.9611293 0.9694122 0.7785264
#>  [8] 0.7794468 0.7833874 0.7917907 0.7917344
#> 
#> $cv.se5
#>  [1] 0.0000000000 0.0004328242 0.0371488864 0.0389160733 0.0007452107
#>  [6] 0.0040593349 0.0814540651 0.0815717378 0.0820171451 0.0829659086
#> [11] 0.0829564223
#> 
#> $folds
#> $folds$`1`
#>  [1] 60  3  2 14 77  6 50  4 72 32 22  1 41 21 63 25
#> 
#> $folds$`2`
#>  [1] 42 67 65 15 73 48 57 26  7 13 31 53  5 27 37 64
#> 
#> $folds$`3`
#>  [1] 71 23 56 35 75 29 30 18 62 44 12 33 68 49 43 55
#> 
#> $folds$`4`
#>  [1] 54 76 24 16 34 66  9 11 69 40 70 36 39  8 19 20
#> 
#> $folds$`5`
#>  [1] 74 38 46 80 47 78 10 45 51 28 61 79 58 17 52 59
#> 
#> 
#> $lambda.min5
#> [1] 5
#> 
#> $lambda.1se5
#> [1] 0

DKplsRcox

DKplsRcox(X_train_micro,time=Y_train_micro,event=C_train_micro,nt=5)
#> Kernel :  rbfdot 
#> Estimated_sigma  0.0122308
#> Error in model.matrix(mt0, mf0, contrasts.arg = contrasts.arg): l'argument "contrasts.arg" est manquant, avec aucune valeur par défaut

DKplsRcox(~X_train_micro,time=Y_train_micro,event=C_train_micro,nt=5)
#> Error in model.matrix(mt0, mf0, , contrasts.arg = contrasts.arg): l'argument "contrasts.arg" est manquant, avec aucune valeur par défaut

DKplsRcox(Xplan=X_train_micro,time=Y_train_micro,event=C_train_micro,nt=5,sparse=TRUE, alpha.pvals.expli=.15)
#> Kernel :  rbfdot 
#> Estimated_sigma  0.01203267
#> Error in model.matrix(mt0, mf0, contrasts.arg = contrasts.arg): l'argument "contrasts.arg" est manquant, avec aucune valeur par défaut

DKplsRcox(Xplan=~X_train_micro,time=Y_train_micro,event=C_train_micro,nt=5,sparse=TRUE, alpha.pvals.expli=.15)
#> Error in model.matrix(mt0, mf0, , contrasts.arg = contrasts.arg): l'argument "contrasts.arg" est manquant, avec aucune valeur par défaut
Metadata

Version

1.7.7

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows