Description
Principal Component Analysis Applied to Ridit Scoring.
Description
Implements the 'PRIDIT' (Principal Component Analysis applied to 'RIDITs') scoring system described in Brockett et al. (2002) <doi:10.1111/1539-6975.00027>. Provides functions for ridit scoring originally developed by Bross (1958) <doi:10.2307/2527727>, calculating 'PRIDIT' weights, and computing final 'PRIDIT' scores for multivariate analysis of ordinal data.
README.md
pridit
An R package that implements the PRIDIT (Principal Component Analysis applied to RIDITs) analysis system as described in Brockett et al. (2002).
Installation
From CRAN (recommended):
install.packages("pridit")
From GitHub (development version):
# Install devtools if you haven't already
install.packages("devtools")
# Install the PRIDIT package
devtools::install_github("rlieberthal/PRIDIT")
Description
This package provides three main functions for calculating and analyzing Ridit scores and PRIDIT scores:
ridit()
- Calculates Ridit scores for a given dataset using the method developed by Bross (1958) and modified by Brockett et al. (2002)PRIDITweight()
- Applies Principal Component Analysis (PCA) to Ridit scores to calculate PRIDIT weights for each variablePRIDITscore()
- Calculates final PRIDIT scores using the weights and ridit scores
Quick Start
library(pridit)
# Load your data (first column should be IDs)
data <- data.frame(
ID = c("A", "B", "C", "D", "E"),
var1 = c(0.9, 0.85, 0.89, 1.0, 0.89),
var2 = c(0.99, 0.92, 0.90, 1.0, 0.93),
var3 = c(1.0, 0.99, 0.98, 1.0, 0.99)
)
# Step 1: Calculate ridit scores
ridit_scores <- ridit(data)
# Step 2: Calculate PRIDIT weights
weights <- PRIDITweight(ridit_scores)
# Step 3: Calculate final PRIDIT scores
final_scores <- PRIDITscore(ridit_scores, data$ID, weights)
print(final_scores)
Data Format
Your input data should be structured as:
- First column: Unique identifiers (IDs)
- Remaining columns: Numerical variables to be analyzed
- All variables should be numeric (convert factors/categories to numeric values like 0,1 or 1,2,3,4,5)
Output
The final PRIDIT scores range from -1 to 1, where:
- The sign indicates class identity
- The magnitude indicates the intensity of that identity
References
- Bross, I. D. (1958). How to use ridit analysis. Biometrics, 14(1), 18-38. doi:10.2307/2527727
- Brockett, P. L., Derrig, R. A., Golden, L. L., Levine, A., & Alpert, M. (2002). Fraud classification using principal component analysis of RIDITs. Journal of Risk and Insurance, 69(3), 341-371. doi:10.1111/1539-6975.00018
- Lieberthal, R. D. (2008). Hospital quality: A PRIDIT approach. Health services research, 43(3), 988-1005.
License
This project is licensed under the Apache License 2.0.
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.