MyNixOS website logo
Description

Creates and Plots P-Value Functions, S-Value Functions, Confidence Distributions and Confidence De….

Contains functions to compute and plot confidence distributions, confidence densities, p-value functions and s-value (surprisal) functions for several commonly used estimates. Instead of just calculating one p-value and one confidence interval, p-value functions display p-values and confidence intervals for many levels thereby allowing to gauge the compatibility of several parameter values with the data. These methods are discussed by Infanger D, Schmidt-Trucksäss A. (2019) <doi:10.1002/sim.8293>; Poole C. (1987) <doi:10.2105/AJPH.77.2.195>; Schweder T, Hjort NL. (2002) <doi:10.1111/1467-9469.00285>; Bender R, Berg G, Zeeb H. (2005) <doi:10.1002/bimj.200410104> ; Singh K, Xie M, Strawderman WE. (2007) <doi:10.1214/074921707000000102>; Rothman KJ, Greenland S, Lash TL. (2008, ISBN:9781451190052); Amrhein V, Trafimow D, Greenland S. (2019) <doi:10.1080/00031305.2018.1543137>; Greenland S. (2019) <doi:10.1080/00031305.2018.1529625> and Rafi Z, Greenland S. (2020) <doi:10.1186/s12874-020-01105-9>.

pvaluefunctions

P-value functions

CRAN_Status_Badge downloads totaldownloads Rdoc

Accompanying paper

We published an accompanying paper to illustrate the use of p-value functions:

Infanger D, Schmidt-Trucksäss A. (2019): P value functions: An underused method to present research results and to promote quantitative reasoning. Statistics in Medicine.38: 4189-4197. doi: 10.1002/sim.8293.

Recreation of the figures in the paper

The code and instructions to reproduce all graphics in our paper can be found in the following GitHub repository: https://github.com/DInfanger/pvalue_functions

Overview

This is the repository for the R-package pvaluefunctions. The package contains R functions to create graphics of p-value functions, confidence distributions, confidence densities, or the Surprisal value (S-value) (Greenland 2019).

Installation

You can install the package directly from CRAN by typing install.packages("pvaluefunctions"). After installation, load it in R using library(pvaluefunctions).

Dependencies

The function depends on the following R packages, which need to be installed beforehand:

Use the command install.packages(c("ggplot2", "scales", "zipfR", "pracma", "gsl")) in R to install those packages.

Examples

For more examples and code, see the vignette.

References

Bender R, Berg G, Zeeb H. (2005): Tutorial: using confidence curves in medical research. Biom J. 47(2): 237-47.

Berrar D (2017): Confidence Curves: an alternative to null hypothesis significance testing for the comparison of classifiers. Mach Learn. 106:911-949.

Fraser D. A. S. (2019): The p-value function and statistical inference. Am Stat. 73:sup1, 135-147.

Greenland S (2019): Valid P-Values Behave Exactly as They Should: Some Misleading Criticisms of P-Values and Their Resolution with S-Values. Am Stat. 73sup1, 106-114.

Infanger D, Schmidt-Trucksäss A. (2019): P value functions: An underused method to present research results and to promote quantitative reasoning. Stat Med. 38, 4189-4197. doi: 10.1002/sim.8293.

Poole C. (1987a): Beyond the confidence interval. Am J Public Health. 77(2): 195-9.

Poole C. (1987b): Confidence intervals exclude nothing. Am J Public Health. 77(4): 492-3.

Rafi Z, Greenland S. (2020): Semantic and cognitive tools to aid statistical science: replace confidence and significance by compatibility and surprise. BMC Med Res Methodol. 20, 244. doi: 10.1186/s12874-020-01105-9.

Rosenthal R, Rubin DB. (1994): The counternull value of an effect size: A new statistic. Psychol Sci. 5(6): 329-34.

Schweder T, Hjort NL. (2016): Confidence, likelihood, probability: statistical inference with confidence distributions. New York, NY: Cambridge University Press.

Xie M, Singh K, Strawderman WE. (2011): Confidence Distributions and a Unifying Framework for Meta-Analysis. J Am Stat Assoc. 106(493): 320-33. doi: 10.1198/jasa.2011.tm09803.

Xie Mg, Singh K. (2013): Confidence distribution, the frequentist distribution estimator of a parameter: A review. Internat Statist Rev. 81(1): 3-39.

Contact

Denis Infanger

Session info

#> R version 4.0.5 (2021-03-31)
#> Platform: x86_64-w64-mingw32/x64 (64-bit)
#> Running under: Windows 10 x64 (build 19042)
#> 
#> Matrix products: default
#> 
#> locale:
#> [1] LC_COLLATE=German_Switzerland.1252  LC_CTYPE=German_Switzerland.1252   
#> [3] LC_MONETARY=German_Switzerland.1252 LC_NUMERIC=C                       
#> [5] LC_TIME=German_Switzerland.1252    
#> 
#> attached base packages:
#> [1] stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] pvaluefunctions_1.6.2
#> 
#> loaded via a namespace (and not attached):
#>  [1] pracma_2.3.3      pillar_1.6.0      compiler_4.0.5    highr_0.9        
#>  [5] tools_4.0.5       digest_0.6.27     evaluate_0.14     lifecycle_1.0.0  
#>  [9] tibble_3.1.1      gtable_0.3.0      pkgconfig_2.0.3   rlang_0.4.11     
#> [13] DBI_1.1.1         yaml_2.2.1        xfun_0.23         stringr_1.4.0    
#> [17] dplyr_1.0.6       knitr_1.33        generics_0.1.0    vctrs_0.3.8      
#> [21] grid_4.0.5        tidyselect_1.1.1  glue_1.4.2        R6_2.5.0         
#> [25] fansi_0.4.2       rmarkdown_2.8     ggplot2_3.3.3     purrr_0.3.4      
#> [29] farver_2.1.0      magrittr_2.0.1    scales_1.1.1      ellipsis_0.3.2   
#> [33] htmltools_0.5.1.1 assertthat_0.2.1  colorspace_2.0-1  utf8_1.2.1       
#> [37] stringi_1.6.1     munsell_0.5.0     crayon_1.4.1

License.

License: GPLv3

Metadata

Version

1.6.2

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows