MyNixOS website logo
Description

Scoring Q-Sort Data.

Computes scores from Q-sort data, using criteria sorts and derived scales from subsets of items. The 'qsort' package includes descriptions and scoring procedures for four different Q-sets commonly used in developmental psychology research: Attachment Q-set (version 3.0) (Waters, 1995, <doi:10.1111/j.1540-5834.1995.tb00214.x>); California Child Q-set (Block and Block, 1969, <doi:10.1037/0012-1649.21.3.508>); Maternal Behaviour Q-set (version 3.1) (Pederson et al., 1999, <https://ir.lib.uwo.ca/cgi/viewcontent.cgi?article=1000&context=psychologypub>); Preschool Q-set (Baumrind, 1968 revised by Wanda Bronson, <doi:10.1111/j.1540-5834.1995.tb00214.x>).

CRAN_Status_Badge Rdoc Build Status DOI

qsort

Overview

qsort is a package that allows scoring Q-sort data, using criteria sorts and derived scales from subsets of items. This package includes descriptions and scoring procedures for four different Q-sets:

  • Attachment Q-set (version 3.0) (Waters, 1995);
  • California Child Q-set (Block & Block, 1969);
  • Maternal Behaviour Q-set (version 3.1) (Pederson et al., 1999);
  • Preschool Q-set (Baumrind, 1968 revised by Wanda Bronson).

qsort package includes 7 objects:

  • qsort_score() a function for scoring Q-sort data;
  • ex_qsort a list containing four example data frames for the referred Q-sets;
  • print_cards() a function for printing Q-set item cards.
  • qset_aqs a data frame containing the Attachment Q-set (aqs; version 3.0);
  • qset_ccq a data frame containing the California Child Q-set (ccq);
  • qset_mbqs a data frame containing the Maternal Behaviour Q-set (mbqs; version 3.1);
  • qset_pq a data frame containing the Preschool Q-set (pq);

Read the documentation (with ?qset_aqs, ?qset_ccq, ?qset_mbqs and ?qset_pq) to learn more about which criteria sorts and scales are included for each Q-set. Or click the R documentation badge at the top of this page.

Installation

To install qsort package from CRAN:

install.packages("qsort")

The qsort package can also be installed from GitHub:

# to install packages from github you first need to install devtools package from CRAN.
# if you haven't installed devtools already just type:
install.packages("devtools")

# to install qsort from github type:
devtools::install_github("joaordaniel/qsort")

Example

The example bellow shows how to use qsort_score() function to compute scores from California Child Q-sort data, present in ex_qsort datasets (ex_qsort$ccq).

library(qsort)
data_ccq <- qsort_score(ex_qsort$ccq, qset_ccq, qsort_length = 100, item1 = "ccq1", subj_id = "participant", group_id = "classroom")
data_ccq
##    participant classroom scomp_c sest_c egores_c egocont_c sdes_c
## 1            1         1  -0.074 -0.093   -0.145    -0.012 -0.137
## 2            2         1  -0.023  0.008    0.090     0.157  0.053
## 3            3         1   0.092  0.086    0.112    -0.021  0.132
## 4            4         1  -0.105 -0.113   -0.182    -0.128 -0.160
## 5            5         1  -0.010 -0.039   -0.092    -0.092 -0.053
## 6            6         2  -0.104 -0.079   -0.042     0.156 -0.089
## 7            7         2   0.051  0.079    0.168     0.169  0.124
## 8            8         2   0.049  0.066    0.153     0.185  0.118
## 9            9         2  -0.024 -0.007    0.009    -0.026  0.007
## 10          10         2  -0.039 -0.046   -0.033     0.098 -0.042
##    partial_scomp_c partial_sest_c partial_egores_c partial_egocont_c
## 1            0.113          0.047           -0.054            -0.007
## 2           -0.160         -0.073            0.086             0.155
## 3           -0.061         -0.053           -0.002            -0.026
## 4            0.088          0.047           -0.089            -0.123
## 5            0.085          0.012           -0.090            -0.090
## 6           -0.054         -0.004            0.068             0.160
## 7           -0.139         -0.053            0.121             0.166
## 8           -0.130         -0.068            0.101             0.182
## 9           -0.069         -0.026            0.004            -0.026
## 10          -0.003         -0.019            0.005             0.100
##    shields_s_emreg
## 1              4.3
## 2              5.9
## 3              5.1
## 4              3.7
## 5              4.4
## 6              5.7
## 7              5.9
## 8              5.9
## 9              5.0
## 10             5.2

Read qsort_score help file (?qsort_score) to learn more about the function's four arguments, and qset_ccq help file (?qset_ccq) to learn more about variables' names.

Print cards

To print item descriptions in separate cards use print_cards() function. The example bellow uses the print_cards() function to create a pdf file with Attachment Q-set items, in a user defined directory (working directory in this case - getwd()) .

library(qsort)
print_cards(qset_aqs, desc_col = "description", dir.print = getwd())

Read print_cards() help file (?print_cards) to learn more about the function's two arguments.

Contributing

Contribution guidelines for this project

References

Baumrind, D. (1968). Manual for the Preschool Behaviour Q-set. Parental Research Project. Berkeley, CA: Institute of Human Development.

Block, J. H., & Block, J. (1969). The California Child Q-Set. Berkeley, CA: Institute of Human Development, University of California.

Pederson, D. R., Moran, G., & Bento, S. (1999). Maternal Behaviour Q-sort (version 3.1). London, ON: Psychology Department, Western University.

Waters, E. (1995). Appendix A: The attachment Q-set (Version 3.0). Monographs of the Society for Research in Child Development, 60, 234-246.

Metadata

Version

0.2.3

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows