MyNixOS website logo
Description

Fit Distributions and Neural Networks to Censored and Truncated Data.

Define distribution families and fit them to interval-censored and interval-truncated data, where the truncation bounds may depend on the individual observation. The defined distributions feature density, probability, sampling and fitting methods as well as efficient implementations of the log-density log f(x) and log-probability log P(x0 <= X <= x1) for use in 'TensorFlow' neural networks via the 'tensorflow' package. Allows training parametric neural networks on interval-censored and interval-truncated data with flexible parameterization. Applications include Claims Development in Non-Life Insurance, e.g. modelling reporting delay distributions from incomplete data, see Bücher, Rosenstock (2022) <doi:10.1007/s13385-022-00314-4>.

reservr

Codecov test coverage R-CMD-check CRAN status

The goal of reservr is to provide a flexible interface for specifying distributions and fitting them to (randomly) truncated and possibly interval-censored data. It provides custom fitting algorithms to fit distributions to i.i.d. samples as well as dynnamic TensorFlow integration to allow training neural networks with arbitrary output distributions. The latter can be used to include explanatory variables in the distributional fits. Reservr also provides some tools relevant for working with its core functionality in an actuarial setting, namely the functions prob_report() and truncate_claims(), both of which make assumptions on the type of random truncation applied to the data.

Please refer to the vignettes distributions.Rmd and tensorflow.Rmd for detailed introductions.

Installation

reservr is not yet on CRAN. You can install the latest development version of reservr via

devtools::install_github("AshesITR/reservr")

You can install the released version of reservr from CRAN with:

install.packages("reservr")

If you want to use all of reservrs features, make sure to also install tensorflow.

Example

This is a basic example which shows how to fit a normal distribution to randomly truncated and censored data.

library(reservr)
set.seed(123)
mu <- 0
sigma <- 1
N <- 1000
p_cens <- 0.8

x <- rnorm(N, mean = mu, sd = sigma)
is_censored <- rbinom(N, size = 1L, prob = p_cens) == 1L
x_lower <- x
x_lower[is_censored] <- x[is_censored] - runif(sum(is_censored), min = 0, max = 0.5)
x_upper <- x
x_upper[is_censored] <- x[is_censored] + runif(sum(is_censored), min = 0, max = 0.5)

t_lower <- runif(N, min = -2, max = 0)
t_upper <- runif(N, min = 0, max = 2)

is_observed <- t_lower <= x & x <= t_upper

obs <- trunc_obs(
  xmin = pmax(x_lower, t_lower)[is_observed],
  xmax = pmin(x_upper, t_upper)[is_observed],
  tmin = t_lower[is_observed],
  tmax = t_upper[is_observed]
)

# Summary of the simulation
cat(sprintf(
  "simulated samples: %d\nobserved samples: %d\ncensored samples: %d\n", 
  N, nrow(obs), sum(is.na(obs$x))
))

# Define outcome distribution and perform fit to truncated and (partially) censored sample
dist <- dist_normal()
the_fit <- fit(dist, obs)

# Visualize resulting parameters and show a kernel density estimate of the samples.
# We replace interval-censored samples with their midpoint for the kernel density estimate.
plot_distributions(
  true = dist,
  fitted = dist, 
  empirical = dist_empirical(0.5 * (obs$xmin + obs$xmax)), 
  .x = seq(-5, 5, length.out = 201), 
  plots = "density", 
  with_params = list(
    true = list(mean = mu, sd = sigma), 
    fitted = the_fit$params
  )
)

Code of Conduct

Please note that the reservr project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.

Metadata

Version

0.0.3

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows