MyNixOS website logo
Description

Results Tables to Bridge the Rift Between Epidemiologists and Their Data.

Presentation-ready results tables for epidemiologists in an automated, reproducible fashion. The user provides the final analytical dataset and specifies the design of the table, with rows and/or columns defined by exposure(s), effect modifier(s), and estimands as desired, allowing to show descriptors and inferential estimates in one table -- bridging the rift between epidemiologists and their data, one table at a time. See Rothman (2017) <doi:10.1007/s10654-017-0314-3>.

Automated, Reproducible Generation of Results Tables: Bridging the Rift Between Epidemiologists and Their Data

R-CMD-check Codecov testcoverage

Tables are the key format in which epidemiologists present their results. Many results tables in applied studies merely show point estimates and confidence intervals, or even p-values, from regression models: a “growing rift between epidemiologists and their data” (Rothman 2017). “Actual,” descriptive data, such as counts stratified by exposure and a main confounder or effect modifier, are often lacking.

rifttable creates presentation-ready results tables for epidemiologists in an automated, reproducible fashion. The user provides the final analytical dataset and specifies the design of the table, with rows and/or columns defined by exposure(s), effect modifier(s), and estimands as desired, allowing to show descriptors and inferential estimates in one table – bridging the rift between epidemiologists and their data, one table at a time.

Installation

The rifttable package can be installed from CRAN:

install.packages("rifttable")

Development versions can be installed from GitHub using:

remotes::install_github("stopsack/rifttable")

The latter installation procedure requires the remotes package, obtainable via install.packages("remotes").

Example

library(rifttable)

example_design <- tibble::tribble(
  ~label,                       ~type,                   ~stratum,
  "Overall",                    "",                      "",
  "– Deaths/N",                 "outcomes/total",        c("Low", "High"),
  "– Risk",                     "risk",                  c("Low", "High"),
  "– Risk ratio (95% CI)",      "rr",                    c("Low", "High"),
  "– Risk difference (95% CI)", "rd",                    c("Low", "High"),
  "",                           "",                      "",
  "Low hormone receptor",       "",                      "",
  "– Deaths/N (Risk)",          "outcomes/total (risk)", "Low",
  "– Risk difference (95% CI)", "rd",                    "Low",
  "High hormone receptor",      "",                      "",
  "– Deaths/N (Risk)",          "outcomes/total (risk)", "High",
  "– Risk difference (95% CI)", "rd",                    "High"
) |> 
  dplyr::mutate(
    exposure = "stage",
    outcome = "death",
    effect_modifier = "receptor"
  )

rifttable(
  design = example_design,
  data = risks::breastcancer
)
StageStage IStage IIStage III
Overall
– Deaths/N7/6726/9621/29
– Risk0.100.270.72
– Risk ratio (95% CI)1 (reference)2.59 (1.20, 5.6)6.9 (3.3, 14)
– Risk difference (95% CI)0 (reference)0.17 (0.05, 0.28)0.62 (0.44, 0.80)
Low hormone receptor
– Deaths/N (Risk)2/12 (0.17)9/22 (0.41)12/14 (0.86)
– Risk difference (95% CI)0 (reference)0.24 (-0.05, 0.54)0.69 (0.41, 0.97)
High hormone receptor
– Deaths/N (Risk)5/55 (0.09)17/74 (0.23)9/15 (0.60)
– Risk difference (95% CI)0 (reference)0.14 (0.02, 0.26)0.51 (0.25, 0.77)

For more examples, see the Get Started vignette.

Metadata

Version

0.7.1

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows