MyNixOS website logo
Description

Robust Hotelling-Type T² Control Chart Based on the Dual STATIS Approach.

Implements a robust multivariate control-chart methodology for batch-based industrial processes with multiple correlated variables using the Dual STATIS (Structuration des Tableaux A Trois Indices de la Statistique) framework. A robust compromise covariance matrix is constructed from Phase I batches with the Minimum Covariance Determinant (MCD) estimator, and a Hotelling-type T² statistic is applied for anomaly detection in Phase II. The package includes functions to simulate clean and contaminated batches, to compute both robust and classical Hotelling T² control charts, to visualize results via robust biplots, and to launch an interactive 'shiny' dashboard. An internal dataset (pharma_data) is provided for reproducibility. See Lavit, Escoufier, Sabatier and Traissac (1994) <doi:10.1016/0167-9473(94)90134-1> for the original STATIS methodology, and Rousseeuw and Van Driessen (1999) <doi:10.1080/00401706.1999.10485670> for the MCD estimator.

robustT2: Robust Hotelling-Type T2 Control Chart Based on STATIS Dual

Overview

robustT2 is an R package designed for robust multivariate statistical process control.
It implements methods based on the STATIS Dual approach to monitor batch-based industrial processes involving multiple correlated quality variables.

The package provides:

  • Construction of a robust compromise covariance matrix using Minimum Covariance Determinant (MCD) estimators.
  • Robust Hotelling-type T² statistics for anomaly detection.
  • Phase II monitoring using standardized Mahalanobis distances projected onto the compromise structure.
  • Visualization tools through robust biplots (GH-Biplot and HJ-Biplot) and an interactive Shiny dashboard.

An internal dataset (datos_farma) is included for reproducibility and demonstration.


Installation

You can install the development version directly from GitHub:

``r

install.packages("devtools")

devtools::install_github("SergioDanielFG/robustT2")

Authors

Sergio Daniel Frutos Galarza PhD Candidate in Multivariate Statistics University of Salamanca (USAL)

Contributors

Omar Ruiz Barzola

Dr. Purificación Galindo Villardón

License

MIT © 2025 Sergio Daniel Frutos Galarza.

Metadata

Version

0.1.0

License

Unknown

Platforms (76)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-linux
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows