MyNixOS website logo
Description

Score Matching Estimation by Automatic Differentiation.

Hyvärinen's score matching (Hyvärinen, 2005) <https://jmlr.org/papers/v6/hyvarinen05a.html> is a useful estimation technique when the normalising constant for a probability distribution is difficult to compute. This package implements score matching estimators using automatic differentiation in the 'CppAD' library <https://github.com/coin-or/CppAD> and is designed for quickly implementing score matching estimators for new models. Also available is general robustification (Windham, 1995) <https://www.jstor.org/stable/2346159>. Already in the package are estimators for directional distributions (Mardia, Kent and Laha, 2016) <doi:10.48550/arXiv.1604.08470> and the flexible Polynomially-Tilted Pairwise Interaction model for compositional data. The latter estimators perform well when there are zeros in the compositions (Scealy and Wood, 2023) <doi:10.1080/01621459.2021.2016422>, even many zeros (Scealy, Hingee, Kent, and Wood, 2024) <doi:10.1007/s11222-024-10412-w>.

scorematchingad

R-CMD-check

The goal of scorematchingad is to enable fast implementation of score matching estimators through the use of automatic differentiation in the CppAD library. Such implementation is best done by either contributing to this package or creating a new package that links to this package. On linux with the gcc compiler it is possible to create estimators for new models interactively using customll() (I am pondering how it is that this feature only works on linux with gcc).

See the file DESCRIPTION for a slightly longer description, and ./R/scorematchingad-package.R (equivalently help(scorematchingad, scorematchingad) from within R) for an even longer description. The built-in help for R packages is well populated.

Installation

You can install the development version of scorematchingad from GitHub with:

# install.packages("devtools")
devtools::install_github("kasselhingee/scorematchingad")

Example

Some models are already incorporated into scorematchingad. Below is an example of estimating the Polynomially-Tilted Pairwise Interaction model (Scealy and Wood, 2023) for compositional data:

library(scorematchingad)
model <- rppi_egmodel(100)
estalr <- ppi(model$sample,
              paramvec = ppi_paramvec(betap = -0.5, p = ncol(model$sample)),
              trans = "alr")

This is an example of obtaining a tape of the score matching discrepancy of a custom likelihood for compositional data, which most naturally lies on the simplex:

myll <- customll("a1type dirichlet(const veca1 &u, const veca1 &beta) {
  size_t d  = u.size();
  a1type y(0.);  // initialize summation at 0
  for(size_t i = 0; i < d; i++)
  {   y   += beta[i] * log(u[i]);
  }
  return y;
}")

tapes <- buildsmdtape("sim", "identity", "sim", 
 myll, rep(1/3, 3), rep(NA, 3), 
 bdryw="minsq", acut = 0.01)

Using scorematchingad in Other Packages [draft notes]

  • Avoid including the implementations of wrap and as for veca1, mata1 etc except in RcppExports.cpp. This makes sure that the speciailsations definitions are not duplicated for each .cpp file in your ./src directory. In practise you can get the scorematchingad types by including just the _forward.h header file.
Metadata

Version

0.0.67

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows