MyNixOS website logo
Description

Computation of Variance-Based Sensitivity Indices.

It allows to rapidly compute, bootstrap and plot up to fourth-order Sobol'-based sensitivity indices using several state-of-the-art first and total-order estimators. Sobol' indices can be computed either for models that yield a scalar as a model output or for systems of differential equations. The package also provides a suit of benchmark tests functions and several options to obtain publication-ready figures of the model output uncertainty and sensitivity-related analysis. An overview of the package can be found in Puy et al. (2022) <doi:10.18637/jss.v102.i05>.

CRAN RStudio mirror downloads

sensobol: an R package to compute variance-based sensitivity indices

The R package sensobol provides several functions to conduct variance-based uncertainty and sensitivity analysis, from the estimation of sensitivity indices to the visual representation of the results. It implements several state-of-the-art first and total-order estimators and allows the computation of up to fourth-order effects, as well as of the approximation error, in a swift and user-friendly way.

Installation

To install the stable version on CRAN, use

install.packages("sensobol")

To install the development version, use devtools:

install.packages("devtools") # if you have not installed devtools package already
devtools::install_github("arnaldpuy/sensobol", build_vignettes = TRUE)

Example

This brief example shows how to compute Sobol' indices. For a more detailed explanation of the package functions, check the vignette.

## Load the package:
library(sensobol)

## Define the base sample size and the parameters
N <- 2 ^ 8
params <- paste("X", 1:3, sep = "")

## Create sample matrix to compute first and total-order indices:
mat <- sobol_matrices(N = N, params = params)

## Compute the model output (using the Ishigami test function):
Y <- ishigami_Fun(mat)

## Compute and bootstrap the Sobol' indices:
ind <- sobol_indices(Y = Y, N = N, params = params)

Citation

Please use the following citation if you use sensobol in your publications:

A. Puy, S. Lo Piano, A. Saltelli, S. A. Levin (2022). sensobol: Computation of 
Variance-Based Sensitivity Indices. Journal of Statistical Software 102(5), 
1-37. doi:10.18637/jss.v102.i05.

A BibTex entry for LaTex users is:

@article{,
author = {Puy, Arnald and {Lo Piano}, Samuele and Saltelli, Andrea and Levin, Simon A.},
journal = {Journal of Statistical Software},
title = {{sensobol: an R package to compute variance-based sensitivity indices}},
doi = {10.18637/jss.v102.i05},
volume = {102}, 
number = {5},
pages = {1--37},
year = {2022}
}
Metadata

Version

1.1.5

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows