MyNixOS website logo
Description

Find Clinical Trial Sites Under-Reporting Adverse Events.

Monitoring of Adverse Event (AE) reporting in clinical trials is important for patient safety. Sites that are under-reporting AEs can be detected using Bootstrap-based simulations that simulate overall AE reporting. Based on the simulation an AE under-reporting probability is assigned to each site in a given trial (Koneswarakantha 2021 <doi:10.1007/s40264-020-01011-5>).

simaerep

R buildstatus codecov Lifecycle:experimental R Package Validationreport CRANrelease

Simulate adverse event reporting in clinical trials with the goal of detecting under-reporting sites.

Monitoring of Adverse Event (AE) reporting in clinical trials is important for patient safety. We use bootstrap-based simulation to assign an AE under-reporting probability to each site in a clinical trial. The method is inspired by the ‘infer’ R package and Allen Downey’s blog article: “There is only one test!”.

Installation

CRAN

install.packages("simaerep")

Development Version

You can install the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("openpharma/simaerep")

IMPALA

simaerep has been published as workproduct of the Inter-Company Quality Analytics (IMPALA) consortium. IMPALA aims to engage with Health Authorities inspectors on defining guiding principles for the use of advanced analytics to complement, enhance and accelerate current QA practices. simaerep has initially been developed at Roche but is currently evaluated by other companies across the industry to complement their quality assurance activities (see testimonials).

IMPALAlogo

Publication

Koneswarakantha, B., Barmaz, Y., Ménard, T. et al. Follow-up on the Use of Advanced Analytics for Clinical Quality Assurance: Bootstrap Resampling to Enhance Detection of Adverse Event Under-Reporting. Drug Saf (2020). https://doi.org/10.1007/s40264-020-01011-5

Vignettes/ Articles/ Tutorials

video presentation 15 min

Validation Report

Download as pdf in the release section generated using thevalidatoR.

Application


suppressPackageStartupMessages(library(simaerep))
suppressPackageStartupMessages(library(tidyverse))
suppressPackageStartupMessages(library(knitr))

set.seed(1)

df_visit <- sim_test_data_study(
  n_pat = 1000, # number of patients in study
  n_sites = 100, # number of sites in study
  frac_site_with_ur = 0.05, # fraction of sites under-reporting
  ur_rate = 0.4, # rate of under-reporting
  ae_per_visit_mean = 0.5 # mean AE per patient visit
)

df_visit$study_id <- "A"

df_visit %>%
  select(study_id, site_number, patnum, visit, n_ae) %>%
  head(25) %>%
  knitr::kable()
study_idsite_numberpatnumvisitn_ae
AS0001P00000110
AS0001P00000121
AS0001P00000131
AS0001P00000142
AS0001P00000153
AS0001P00000163
AS0001P00000173
AS0001P00000183
AS0001P00000193
AS0001P000001103
AS0001P000001113
AS0001P000001123
AS0001P000001134
AS0001P000001144
AS0001P000001154
AS0001P000001166
AS0001P000001176
AS0001P00000210
AS0001P00000220
AS0001P00000230
AS0001P00000240
AS0001P00000250
AS0001P00000260
AS0001P00000270
AS0001P00000281

aerep <- simaerep(df_visit)

plot(aerep, study = "A") 

Left panel shows mean AE reporting per site (lightblue and darkblue lines) against mean AE reporting of the entire study (golden line). Single sites are plotted in descending order by AE under-reporting probability on the right panel in which grey lines denote cumulative AE count of single patients. Grey dots in the left panel plot indicate sites that were picked for single plotting. AE under-reporting probability of dark blue lines crossed threshold of 95%. Numbers in the upper left corner indicate the ratio of patients that have been used for the analysis against the total number of patients. Patients that have not been on the study long enough to reach the evaluation point (visit_med75, see introduction) will be ignored.

Metadata

Version

0.5.0

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows