Semiparametric Likelihood Estimation with Errors in Variables.
SLEEV: Semiparametric Likelihood Estimation with Errors in Variables
The complete R package logreg2ph
and code for the simulation settings included in this paper.
Part of the R package TwoPhaseReg
as described in this paper.
This package combines elements of the R packages logreg2ph
and TwoPhaseReg
Install
To install the package, run the following in your R
console:
devtools::install_github("Epic-Doughnut/sleev")
Simulation settings
Inside the simulations
subdirectory, you will find the following:
Table1_SimSetup.R
: simulations with outcome misclassification and a binary error-prone covariate, intended to inspect increasing Phase I and Phase II sample sizesTables2&3_SimSetup.R
: Simulations with outcome misclassification and a continuous covariate with additive errors, intended to inspect varied error varianceTable4_SimSetup.R
: Simulations with outcome misclassification and a continuous covariate with additive errors, intended to inspect varied outcome error ratesTableS2_SimSetup.R
: Simulations with outcome misclassification and binary error-prone covariate, intended to inspect robustness of the fully-parametric MLE and proposed SMLE under complex covariate errorTableS3_SimSetup.R
: Simulations with outcome misclassification and binary error-prone covariate, intended to inspect robustness of the fully-parametric MLE and proposed SMLE under complex outcome and covariate errorTableS4_SimSetup.R
: Simulations with continuous covariate with additive errors (classical measurement error), intended to compare performance of proposed SMLE to traditional regression calibration (RC) approachTableS5_SimSetup.R
: Simulation results for the naive estimator under outcome misclassification and a continuous covariate under varied parameterizationsTableS6_SimSetup.R
: Simulations with outcome misclassification and continuous covariate with differentially biased additive errors, intended to demonstrate robustness of the proposed SMLE to different covariate error typesTableS7_SimSetup.R
: Simulations with outcome misclassification and continuous covariate with differential multiplicative errors, intended to demonstrate robustness of the proposed SMLE to different covariate error types
Generating Data
Inside each of the files above, you will find code to generate the appropriate data for that simulation setting, e.g.,
set.seed(918)
# Set sample sizes ----------------------------------------
N <- 1000 # Phase I size = N
n <- 250 # Phase II/audit size = n
# Generate true values Y, Xb, Xa ----------------------------
Xa <- rbinom(n = N, size = 1, prob = 0.25)
Xb <- rbinom(n = N, size = 1, prob = 0.5)
Y <- rbinom(n = N, size = 1, prob = (1 + exp(-(- 0.65 - 0.2 * Xb - 0.1 * Xa))) ^ (- 1))
# Generate error-prone Xb* from error model P(Xb*|Xb,Xa) ------
sensX <- specX <- 0.75
delta0 <- - log(specX / (1 - specX))
delta1 <- - delta0 - log((1 - sensX) / sensX)
Xbstar <- rbinom(n = N, size = 1, prob = (1 + exp(- (delta0 + delta1 * Xb + 0.5 * Xa))) ^ (- 1))
# Generate error-prone Y* from error model P(Y*|Xb*,Y,Xb,Xa) ---
sensY <- 0.95
specY <- 0.90
theta0 <- - log(specY / (1 - specY))
theta1 <- - theta0 - log((1 - sensY) / sensY)
Ystar <- rbinom(n = N, size = 1, prob = (1 + exp(- (theta0 - 0.2 * Xbstar + theta1 * Y - 0.2 * Xb - 0.1 * Xa))) ^ (- 1))
Then, the user has the option of two audit designs: simple random sampling (SRS) or 1:1 case-control sampling based on $Y^*$ (naive case-control). Based on these designs, the validation indicators V are generated as follows:
# Choose audit design: SRS or -----------------------------
## Naive case-control: case-control based on Y^* ----
audit <- "SRS" #or "Naive case-control"
# Draw audit of size n based on design --------------------
## V is a TRUE/FALSE vector where TRUE = validated --------
if(audit == "SRS")
{
V <- seq(1, N) %in% sample(x = seq(1, N), size = n, replace = FALSE)
}
if(audit == "Naive case-control")
{
V <- seq(1, N) %in% c(sample(x = which(Ystar == 0), size = 0.5 * n, replace = FALSE),
sample(x = which(Ystar == 1), size = 0.5 * n, replace = FALSE))
}
Finally, combine the generated data and validation indicators into an analytical dataset:
# Build dataset --------------------------------------------
sdat <- cbind(Y, Xb, Ystar, Xbstar, Xa, V)
# Make Phase-II variables Y, Xb NA for unaudited subjects ---
sdat[!V, c("Y", "Xb")] <- NA
Running Estimator Code
The R
scripts each contain implementations for the estimators discussed in the paper. Examples of each are provided below:
1. Naive Analysis
naive <- glm(Ystar ~ Xbstar + Xa, family = "binomial", data = data.frame(sdat))
beta_naive <- naive$coefficients[2]
se_naive <- sqrt(diag(vcov(naive)))[2]
2. Complete-Case Analysis
cc <- glm(Y[V] ~ Xb[V] + Xa[V], family = "binomial")
beta_cc <- cc$coefficients[2]
se_cc <- sqrt(diag(vcov(cc)))[2]
3. Horvitz--Thompson Estimator (for Naive Case-Control Audit Only)
library(sandwich)
if (audit == "Naive case-control") {
sample_wts <- ifelse(Ystar[V] == 0, 1 / ((0.5 * n) / (table(Ystar)[1])), 1 / ((0.5 * n) / (table(Ystar)[2])))
ht <- glm(Y[V] ~ Xb[V] + Xa[V], family = "binomial",
weights = sample_wts)
beta_ht <- ht$coefficients[2]
se_ht <- sqrt(diag(sandwich(ht)))[2]
}
4. Generalized Raking Estimator
### Influence function for logistic regression
### Taken from: https://github.com/T0ngChen/multiwave/blob/master/sim.r
inf.fun <- function(fit) {
dm <- model.matrix(fit)
Ihat <- (t(dm) %*% (dm * fit$fitted.values * (1 - fit$fitted.values))) / nrow(dm)
## influence function
infl <- (dm * resid(fit, type = "response")) %*% solve(Ihat)
infl
}
naive_infl <- inf.fun(naive) # error-prone influence functions based on naive model
colnames(naive_infl) <- paste0("if", 1:3)
# Add naive influence functions to sdat -----------------------------------------------
sdat <- cbind(id = 1:N, sdat, naive_infl)
# Calibrate raking weights to the sum of the naive influence functions ----------------
library(survey)
if (audit == "SRS") {
sstudy <- twophase(id = list(~id, ~id),
data = data.frame(sdat),
subset = ~V)
} else if (audit == "Naive case-control") {
sstudy <- twophase(id = list(~id, ~id),
data = data.frame(sdat),
strat = list(NULL, ~Ystar),
subset = ~V)
}
scal <- calibrate(sstudy, ~ if1 + if2 + if3, phase = 2, calfun = "raking")
# Fit analysis model using calibrated weights -----------------------------------------
rake <- svyglm(Y ~ Xb + Xa, family = "binomial", design = scal)
beta_rake <- rake$coefficients[2]
se_rake <- sqrt(diag(vcov(rake)))[2]
5. Maximum Likelihood Estimator (MLE) (for Binary Xb* Only)
# Script: two-phase log-likelihood specification adapted from Tang et al. (2015) named ~/code/Tang_twophase_loglik_binaryX.R
source("Tang_twophase_loglik_binaryX.R")
fit_Tang <- nlm(f = Tang_twophase_loglik,
p = rep(0, 12),
hessian = TRUE,
Val = "V",
Y_unval = "Ystar",
Y_val="Y",
X_unval = "Xbstar",
X_val = "Xb",
C = "Xa",
data = sdat)
beta_mle <- fit_Tang$estimate[10]
se_mle <- sqrt(diag(solve(fit_Tang$hessian)))[10]
6. Sieve Maximum Likelihood Estimator (SMLE)
# Construct B-spline basis -------------------------------
nsieve <- 4
B <- matrix(0, nrow = N, ncol = nsieve)
B[which(Xa == 0 & Xbstar == 0), 1] <- 1
B[which(Xa == 0 & Xbstar == 1), 2] <- 1
B[which(Xa == 1 & Xbstar == 0), 3] <- 1
B[which(Xa == 1 & Xbstar == 1), 4] <- 1
colnames(B) <- paste0("bs", seq(1, nsieve))
sdat <- cbind(sdat, B)
library("logreg2ph")
smle <- logreg2ph(Y_unval = "Ystar",
Y_val = "Y",
X_unval = "Xbstar",
X_val = "Xb",
C = "Xa",
Validated = "V",
Bspline = colnames(B),
data = sdat,
noSE = FALSE,
MAX_ITER = 1000,
TOL = 1E-4)
beta_smle <- smle$Coefficients$Coefficient[2]
se_smle <- smle$Coefficients$SE[2]