MyNixOS website logo
Description

Preparing Genotypic Datasets in Order to Run Genomic Analysis.

Three functions to clean, summarize and prepare genomic datasets to Genome Selection and Genome Association analysis and to estimate population genetic parameters.

snpReady

A tool to assist breeders to prepare genotypic datasets for genomic analysis in order to run genomic analysis and estimates some population genetics parameters. Thus, it produce outputs that can be use in many packages or softwares related to genomic analysis.

Installation

snpReady is available on CRAN

install.packages("snpReady")

In github it is available the experimental version and its installation needs to be done via devtools. Hence, it is necessary first install devtools and later install snpReady

install.packages("devtools")
library(devtools)
install_github("italo-granato/snpReady")

Usage

Below, we present some basic usage for the three functions available in snpReady

raw.data

Function to clean and recode raw dataset from genotyping

data(maize.line)
M <- raw.data(as.matrix(maize.line), frame="long", base=TRUE, sweep.sample= 0.8, 
call.rate=0.95, maf=0.05, input=TRUE, outfile="-101")

G.matrix

Function to create genomic relationship matrix (GRM)

data(maize.hyb)
x <- G.matrix(maize.hyb, method = "VanRaden", format = "wide")
A <- x$Ga
D <- x$Gd

popgen

Function to estimate some parameters of genetic of population using markers

data(maize.hyb)
x <- popgen(maize.hyb) 

Acknowledgments

I would like to thank people from Allogamous Plant Breeding Laboratory Team for helping in this project.

Authors

Allogamous Plant Breeding Laboratory Team

Contributting

To anyone who wants to contribute, please contact Italo Granato for more details.

Metadata

Version

0.9.6

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows