MyNixOS website logo
Description

Bayesian Predictive Stacking for Scalable Geospatial Transfer Learning.

Provides functions for Bayesian Predictive Stacking within the Bayesian transfer learning framework for geospatial artificial systems, as introduced in "Bayesian Transfer Learning for Artificially Intelligent Geospatial Systems: A Predictive Stacking Approach" (Presicce and Banerjee, 2024) <doi:10.48550/arXiv.2410.09504>. This methodology enables efficient Bayesian geostatistical modeling, utilizing predictive stacking to improve inference across spatial datasets. The core functions leverage 'C++' for high-performance computation, making the framework well-suited for large-scale spatial data analysis in parallel and distributed computing environments. Designed for scalability, it allows seamless application in computationally demanding scenarios.

Univariate and Multivariate Accelerated Spatial Modeling by Bayesian Predictive Stacking

This package provides the principal functions to perform accelerated modeling for univariate and multivariate spatial regressions. The package is used mostly within the novel working paper "Bayesian Transfer Learning for Artificially Intelligent Geospatial Systems: A Predictive Stacking Approach" (Luca Presicce and Sudipto Banerjee, 2024+)". To guarantee the reproducibility of scientific results, in the Bayesian-Transfer-Learning-for-GeoAI repository are also available all the scripts of code used for simulations, data analysis, and results presented in the Manuscript and its Supplemental material.


Roadmap

FolderDescription
Rcontains funtions in R
srccontains function in Rcpp/C++

Guided installation

Since the package is not already available on CRAN (already submitted, and hopefully soon available), we use the devtools R package to install. Then, check for its presence on your device, otherwise install it:

if (!require(devtools)) {
  install.packages("devtools", dependencies = TRUE)
}

Once you have installed devtools, we can proceed. Let's install the spBPS package!

devtools::install_github("lucapresicce/spBPS")

Cool! You are ready to start, now you too could perform fast & feasible Bayesian geostatistical modeling!


Contacts

AuthorLuca Presicce ([email protected]) & Sudipto Banerjee ([email protected])
MaintainerLuca Presicce ([email protected])
ReferenceLuca Presicce and Sudipto Banerjee (2024+) "Bayesian Transfer Learning for Artificially Intelligent Geospatial Systems: A Predictive Stacking Approach"
Metadata

Version

0.0-4

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows