MyNixOS website logo
Description

Detect Anomalies Using the Spectral Residual Algorithm.

Apply the spectral residual algorithm to data, such as a time series, to detect anomalies. Anomaly scores can be used to determine outliers based upon a threshold or fed into more sophisticated prediction models. Methods are based upon "Time-Series Anomaly Detection Service at Microsoft", Ren, H., Xu, B., Wang, Y., et al., (2019) <doi:10.48550/arXiv.1906.03821>.

spectralAnomaly spectralAnomaly website

CRANstatus CRANchecks R-CMD-check Dependencies Downloads Codecov testcoverage

The {spectralAnomaly} package is a simple set of tools for R users to detect anomalies in data, such as a time series, using the ‘Spectral Residual’ method.

Installation

The {spectralAnomaly} can be installed directly from CRAN:

install.packages('spectralAnomaly')

You can also install the latest development version of {spectralAnomaly} like so:

remotes::install_github('al-obrien/spectralAnomaly')

Examples

library(spectralAnomaly)

Create a noisy time series with a modest anomaly threshold

test_ts <- ts(rnorm(12*6,10,2), start=c(2009, 1), end=c(2014, 12), frequency=12)
ts_scores <- anomaly_score(test_ts, score_window = 25)
plot(test_ts, type = 'l')
points(test_ts, col = ifelse(ts_scores > quantile(ts_scores, prob = 0.95),'red',NA), pch = 16)
Anomalies in a noisy time series.

Create a series with a step

test_ts_step <- c(rnorm(1, 1, n=250),
                  rnorm(10, 1, n=250))
ts_scores <- anomaly_score(test_ts_step, score_window = 100)
plot(test_ts_step, type = 'l')
points(test_ts_step, col = ifelse(ts_scores > quantile(ts_scores, prob = 0.99),'red',NA), pch = 16)
Anomalies in a time series with a breakpoint.

References

  1. Time-Series Anomaly Detection Service at Microsoft
  2. ML-based Anomaly Detection
  3. Saliency Detection
  4. anomalydetector.
Metadata

Version

0.1.1

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows