MyNixOS website logo
Description

Semi-Parametric Factor Analysis.

Estimation, scoring, and plotting functions for the semi-parametric factor model proposed by Liu & Wang (2022) <doi:10.1007/s11336-021-09832-8> and Liu & Wang (2023) <arXiv:2303.10079>. Both the conditional densities of observed responses given the latent factors and the joint density of latent factors are estimated non-parametrically. Functional parameters are approximated by smoothing splines, whose coefficients are estimated by penalized maximum likelihood using an expectation-maximization (EM) algorithm. E- and M-steps can be parallelized on multi-thread computing platforms that support 'OpenMP'. Both continuous and unordered categorical response variables are supported.

spfa

Estimation, scoring, and plotting functions for the semi-parametric factor model proposed by Liu & Wang [(2022)] (https://link.springer.com/article/10.1007/s11336-021-09832-8) and Liu & Wang (2023). Both the conditional densities of observed responses given the latent factors and the joint density of latent factors are estimated non-parametrically. Functional parameters are approximated by smoothing splines, whose coefficients are estimated by penalized maximum likelihood using an expectation-maximization (EM) algorithm. E- and M-steps can be parallelized on multi-thread computing platforms that support ‘OpenMP’. Both continuous and unordered categorical response variables are supported.

Installation

You can install the development version of spfa from GitHub, with:

# install.packages("devtools")
devtools::install_github("wwang1370/spfa")

Example

Various examples and help files have been compiled using the knitr package to generate HTML output, and are available on the package help file. User contributions are welcome!

library(spfa)
## basic example code includes fitting an spfa model for response time
#  RT <- spfa::simdata[,1:8]
# spfa_example <- spfa(data = RT, 
#       dimension = rep(0, ncol(RT)), 
#       discrete = rep(F, ncol(RT)))

Citation:

Liu, Y., & Wang, W. (2022). Semiparametric factor analysis for item-level response time data. Psychometrika, 87 (2), 666-692.

Liu, Y., & Wang, W. (2023). What Can We Learn from a Semiparametric Factor Analysis of Item Responses and Response Time? An Illustration with the PISA 2015 Data. Retrieved from http://arxiv.org/abs/2303.10079

Metadata

Version

1.0

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows