MyNixOS website logo
Description

Regression Spline Functions and Classes.

Constructs basis functions of B-splines, M-splines, I-splines, convex splines (C-splines), periodic splines, natural cubic splines, generalized Bernstein polynomials, their derivatives, and integrals (except C-splines) by closed-form recursive formulas. It also contains a C++ head-only library integrated with Rcpp. See Wang and Yan (2021) <doi:10.6339/21-JDS1020> for details.

splines2

CRAN_Status_Badge Total_Downloads Downloads from the RStudio CRANmirror BuildStatus codecov JDS

Package website: release | development

The R package splines2 is intended to be a user-friendly supplementary package to the base package splines.

Features

The package splines2 provides functions to construct basis matrices of

  • B-splines
  • M-splines
  • I-splines
  • convex splines (C-splines)
  • periodic splines
  • natural cubic splines
  • generalized Bernstein polynomials
  • their integrals (except C-splines) and derivatives of given order by closed-form recursive formulas

In addition to the R interface, splines2 provides a C++ header-only library integrated with Rcpp, which allows the construction of spline basis functions directly in C++ with the help of Rcpp and RcppArmadillo. Thus, it can also be treated as one of the Rcpp* packages. A toy example package that uses the C++ interface is available here.

Installation of CRAN Version

You can install the released version from CRAN.

install.packages("splines2")

Development

The latest version of the package is under development at GitHub. If it is able to pass the automated package checks, one may install it by

if (! require(remotes)) install.packages("remotes")
remotes::install_github("wenjie2wang/splines2", upgrade = "never")

Getting Started

The Online document provides a reference for all functions and contains the following vignettes:

Performance

Since version 0.3.0, the implementation of the main functions has been rewritten in C++ with the help of the Rcpp and RcppArmadillo packages. The computational performance has thus been boosted and comparable with the function splines::splineDesign().

Some quick micro-benchmarks are provided below for reference.

library(microbenchmark)
options(microbenchmark.unit="relative")
library(splines)
library(splines2)

set.seed(123)
x <- runif(1e3)
degree <- 3
ord <- degree + 1
internal_knots <- seq.int(0.1, 0.9, 0.1)
boundary_knots <- c(0, 1)
all_knots <- sort(c(internal_knots, rep(boundary_knots, ord)))

## check equivalency of outputs
my_check <- function(values) {
    all(sapply(values[- 1], function(x) {
        all.equal(unclass(values[[1]]), unclass(x), check.attributes = FALSE)
    }))
}

For B-splines, function splines2::bSpline() provides equivalent results with splines::bs() and splines::splineDesign(), and is about 3x faster than bs() and 2x faster than splineDesign() for this example.

## B-splines
microbenchmark(
    "splines::bs" = bs(x, knots = internal_knots, degree = degree,
                       intercept = TRUE, Boundary.knots = boundary_knots),
    "splines::splineDesign" = splineDesign(x, knots = all_knots, ord = ord),
    "splines2::bSpline" = bSpline(
        x, knots = internal_knots, degree = degree,
        intercept = TRUE, Boundary.knots = boundary_knots
    ),
    check = my_check
)
Unit: relative
                  expr    min     lq   mean median     uq    max neval
           splines::bs 3.7488 3.4227 2.9600 3.2924 2.6877 1.9122   100
 splines::splineDesign 2.2028 1.9788 2.0333 2.1305 1.8288 8.2016   100
     splines2::bSpline 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000   100

Similarly, for derivatives of B-splines, splines2::dbs() provides equivalent results with splines::splineDesign(), and is about 2x faster.

## Derivatives of B-splines
derivs <- 2
microbenchmark(
    "splines::splineDesign" = splineDesign(x, knots = all_knots,
                                           ord = ord, derivs = derivs),
    "splines2::dbs" = dbs(x, derivs = derivs, knots = internal_knots,
                          degree = degree, intercept = TRUE,
                          Boundary.knots = boundary_knots),
    check = my_check
)
Unit: relative
                  expr    min     lq  mean median     uq   max neval
 splines::splineDesign 2.6498 2.4535 2.193 2.2861 2.1459 1.558   100
         splines2::dbs 1.0000 1.0000 1.000 1.0000 1.0000 1.000   100

The splines package does not contain an implementation for integrals of B-splines. Thus, we performed a comparison with package ibs (version 1.4), where the function ibs::ibs() was also implemented in Rcpp.

## integrals of B-splines
set.seed(123)
coef_sp <- rnorm(length(all_knots) - ord)
microbenchmark(
    "ibs::ibs" = ibs::ibs(x, knots = all_knots, ord = ord, coef = coef_sp),
    "splines2::ibs" = as.numeric(
        splines2::ibs(x, knots = internal_knots, degree = degree,
                      intercept = TRUE, Boundary.knots = boundary_knots) %*%
        coef_sp
    ),
    check = my_check
)
Unit: relative
          expr    min     lq   mean median     uq    max neval
      ibs::ibs 24.306 21.108 22.016 21.621 21.342 26.533   100
 splines2::ibs  1.000  1.000  1.000  1.000  1.000  1.000   100

The function ibs::ibs() returns the integrated B-splines instead of the integrals of spline basis functions. Thus, we applied the same coefficients to the basis functions from splines2::ibs() for equivalent results, which was still much faster than ibs::ibs().

For natural cubic splines (based on B-splines), splines::ns() uses the QR decomposition to find the null space of the second derivatives of B-spline basis functions at boundary knots, while splines2::nsp() utilizes the closed-form null space derived from the second derivatives of cubic B-splines, which produces nonnegative basis functions (within boundary) and is more computationally efficient.

microbenchmark(
    "splines::ns" = ns(x, knots = internal_knots, intercept = TRUE,
                       Boundary.knots = boundary_knots),
    "splines2::nsp" = nsp(
        x, knots = internal_knots, intercept = TRUE,
        Boundary.knots = boundary_knots
    )
)
Unit: relative
          expr    min     lq   mean median     uq   max neval
   splines::ns 4.9751 4.7263 4.6571 4.4456 4.8987 5.274   100
 splines2::nsp 1.0000 1.0000 1.0000 1.0000 1.0000 1.000   100

The functions bSpline() and mSpline() produce periodic spline basis functions based on B-splines and M-splines, respectively, when periodic = TRUE is specified. The splines::periodicSpline() returns a periodic interpolation spline (based on B-splines) instead of basis matrix. We performed a comparison with package pbs (version 1.1), where the function pbs::pbs() produces a basis matrix of periodic B-spline by using splines::spline.des().

microbenchmark(
    "pbs::pbs" = pbs::pbs(x, knots = internal_knots, degree = degree,
                          intercept = TRUE, periodic = TRUE,
                          Boundary.knots = boundary_knots),
    "splines2::bSpline" = bSpline(
        x, knots = internal_knots, degree = degree, intercept = TRUE,
        Boundary.knots = boundary_knots, periodic = TRUE
    ),
    "splines2::mSpline" = mSpline(
        x, knots = internal_knots, degree = degree, intercept = TRUE,
        Boundary.knots = boundary_knots, periodic = TRUE
    )
)
Unit: relative
              expr    min     lq    mean median     uq     max neval
          pbs::pbs 4.0864 3.9469 3.34075 3.8658 3.6311 1.23830   100
 splines2::bSpline 1.0000 1.0000 1.00000 1.0000 1.0000 1.00000   100
 splines2::mSpline 1.1598 1.1350 0.95918 1.1516 1.1169 0.12212   100
Session Information for Benchmarks
sessionInfo()
R version 4.4.0 (2024-04-24)
Platform: x86_64-pc-linux-gnu
Running under: Arch Linux

Matrix products: default
BLAS/LAPACK: /usr/lib/libopenblas.so.0.3;  LAPACK version 3.12.0

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C               LC_TIME=en_US.UTF-8       
 [4] LC_COLLATE=en_US.UTF-8     LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
[10] LC_TELEPHONE=C             LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

time zone: America/New_York
tzcode source: system (glibc)

attached base packages:
[1] splines   stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] splines2_0.5.2        microbenchmark_1.4.10

loaded via a namespace (and not attached):
 [1] digest_0.6.35     codetools_0.2-20  ibs_1.4           fastmap_1.1.1     xfun_0.43        
 [6] pbs_1.1           knitr_1.46        htmltools_0.5.8.1 rmarkdown_2.26    cli_3.6.2        
[11] compiler_4.4.0    tools_4.4.0       evaluate_0.23     Rcpp_1.0.12       yaml_2.3.8       
[16] rlang_1.1.3      

License

GNU General Public License (≥ 3)

Metadata

Version

0.5.3

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows