MyNixOS website logo
Description

Automated Statistical Analysis and Plotting with CLD.

A lightweight tool that provides a reproducible workflow for selecting and executing appropriate statistical analysis in one-way or two-way experimental designs. The package automatically checks for data normality, conducts parametric (ANOVA) or non-parametric (Kruskal-Wallis) tests, performs post-hoc comparisons with Compact Letter Displays (CLD), and generates publication-ready boxplots, faceted plots, and heatmaps. It is designed for researchers seeking fast, automated statistical summaries and visualization. Based on established statistical methods including Shapiro and Wilk (1965) <doi:10.2307/2333709>, Kruskal and Wallis (1952) <doi:10.1080/01621459.1952.10483441>, Tukey (1949) <doi:10.2307/3001913>, Fisher (1925) <ISBN:0050021702>, and Wickham (2016) <ISBN:978-3-319-24277-4>.

statdecideR

statdecideR is an R package for automatic statistical decision-making, compact letter displays (CLDs), and beautiful plots for parametric and non-parametric tests — making your analysis both robust and publication-ready.

✨ Features

  • Automatically detects normality (Shapiro-Wilk test)
  • Chooses appropriate test: ANOVA or Kruskal-Wallis
  • Performs post-hoc test: Tukey HSD or Multiple Comparisons (agricolae)
  • Displays Compact Letter Display (CLD) results
  • Generates clean boxplots, heatmaps, and faceted plots
  • Fully reproducible and customizable

📦 Installation

# Development version (from local source or GitHub in future)
# install.packages("devtools")
devtools::install_github("yourusername/statdecideR")

⚠ Replace "yourusername" with your actual GitHub username once hosted.

🛠️ Usage

library(statdecideR)

# Load your data
data <- read.csv("your_data.csv")

# Run analysis and plot
plot_with_cld(
  data = data,
  dep_var = "pollen",          # Your dependent variable
  group_var = "month",         # Your independent variable (factor)
  normal = FALSE               # Will be auto-detected in future version
)

📊 Example Output

The package automatically performs: - Statistical test selection - Post-hoc analysis (if significant) - Plot with CLD labels

📄 License

MIT © Subhradip Bhattacharjee.

Metadata

Version

0.1.6

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows