MyNixOS website logo
Description

Stepwise Split Regularized Regression.

Functions to perform stepwise split regularized regression. The approach first uses a stepwise algorithm to split the variables into the models with a goodness of fit criterion, and then regularization is applied to each model. The weights of the models in the ensemble are determined based on a criterion selected by the user.

BuildStatus CRAN_Status_Badge Downloads

stepSplitReg

This package provides functions for performing stepwise split regularized regression.


Installation

You can install the stable version on R CRAN.

install.packages("stepSplitReg", dependencies = TRUE)

You can install the development version from GitHub

library(devtools)
devtools::install_github("AnthonyChristidis/stepSplitReg")

Usage

# Required Libraries
library(mvnfast)

# Setting the parameters
p <- 800
n <- 40
n.test <- 2000
sparsity <- 0.2
rho <- 0.5
SNR <- 3
set.seed(0)

# Generating the coefficient
p.active <- floor(p*sparsity)
a <- 4*log(n)/sqrt(n)
neg.prob <- 0.2
nonzero.betas <- (-1)^(rbinom(p.active, 1, neg.prob))*(a + abs(rnorm(p.active)))

# Correlation structure
Sigma <- matrix(0, p, p)
Sigma[1:p.active, 1:p.active] <- rho
diag(Sigma) <- 1
true.beta <- c(nonzero.betas, rep(0 , p - p.active))

# Computing the noise parameter for target SNR
sigma.epsilon <- as.numeric(sqrt((t(true.beta) %*% Sigma %*% true.beta)/SNR))

# Simulate some data
set.seed(1)
x.train <- mvnfast::rmvn(n, mu=rep(0,p), sigma=Sigma)
y.train <- 1 + x.train %*% true.beta + rnorm(n=n, mean=0, sd=sigma.epsilon)
x.test <- mvnfast::rmvn(n.test, mu=rep(0,p), sigma=Sigma)
y.test <- 1 + x.test %*% true.beta + rnorm(n.test, sd=sigma.epsilon)

# Stepwise Split Regularized Regression
step.out <- cv.stepSplitReg(x.train, y.train, n_models = c(5, 10), max_variables = NULL, keep = 4/4,
                            model_criterion = c("F-test", "RSS")[1],
                            stop_criterion = c("F-test", "pR2", "aR2", "R2", "Fixed")[1], stop_parameter = 0.05, 
                            shrinkage = TRUE, alpha = 4/4, include_intercept = TRUE, 
                            n_lambda = 50, tolerance = 1e-2, max_iter = 1e5, n_folds = 5, 
                            model_weights = c("Equal", "Proportional", "Stacking")[1], 
                            n_threads = 1)
step.coefficients <- coef(step.out, group_index = 1:20)
step.predictions <- predict(step.out, x.test, group_index = 1:20)
mspe.step <- mean((step.predictions-y.test)^2)/sigma.epsilon^2

License

This package is free and open source software, licensed under GPL (>= 2).

Metadata

Version

1.0.3

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows