MyNixOS website logo
Description

Stochastic Collision Risk Model.

Collision Risk Models for avian fauna (seabird and migratory birds) at offshore wind farms. The base deterministic model is derived from Band (2012) <https://tethys.pnnl.gov/publications/using-collision-risk-model-assess-bird-collision-risks-offshore-wind-farms>. This was further expanded on by Masden (2015) <doi:10.7489/1659-1> and code used here is heavily derived from this work with input from Dr A. Cook at the British Trust for Ornithology. These collision risk models are useful for marine ornithologists who are working in the offshore wind industry, particularly in UK waters. However, many of the species included in the stochastic collision risk models can also be found in the North Atlantic in the United States and Canada, and could be applied there.

stochLAB

test-coverage pkgdown R-CMD-check pkgcheck

{stochLAB} is a tool to run Collision Risk Models (CRMs) for seabirds on offshore wind farms.

Overview

The {stochLAB} package is an adaptation of the R code developed by Masden (2015) to incorporate variability and uncertainty in the avian collision risk model originally developed by Band (2012). The package is for use by individuals modelling collision risk of seabirds at offshore wind farms. The primary functions take input information on the morphology, behaviour and densities of seabirds as well data pertaining to the proposed wind farm (i.e., turbine dimensions, speed and number).

These collision risk models are useful for marine ornithologists who are working in the offshore wind industry, particularly in UK waters. However, the package itself relies on generic biological and windfarm data and can be applied anywhere (i.e., in any marine environment) as long as the parameters are appropriate for the species and windfarms of interest.

Code developed under {stochLAB} substantially re-factored and re-structured Masden’s (heavily script-based) implementation into a user-friendly, streamlined, well documented and easily distributed tool. Furthermore, the package lays down the code infrastructure for easier incorporation of new functionality, e.g. extra parameter sampling features, model expansions, etc.

In addition, previous code underpinning core calculations for the extended model has been replaced by an alternative approach, resulting in significant gains in computational speed over Masden’s code. This optimization is particularly beneficial under a stochastic context, when core calculations are called repeatedly during simulations.

For a more detailed overview type ?stochLAB, once installed!

Installation

You can install the released version of stochLAB from CRAN with:

install.packages("stochLAB")

You can install the development version with:

# install.packages("devtools")
devtools::install_github("HiDef-Aerial-Surveying/stochLAB")

This package depends on the following packages, which should be installed automatically:

cli dplyr glue logr magrittr msm pracma purrr rlang stats tibble tidyr

Bug reports

To report any bugs, please log an ISSUE

Input parameters

Many of the input parameters for the stoch_crm() function need to be obtained from developers (e.g., blade pitch, rotor radius, wind speed, etc…). However, there are many parameters around the morphology and biology of birds that are built into the sCRM package for UK seabirds, which can be found HERE. sCRM is an R Shiny application that wraps up the stoch_crm() and band_crm() functions. These biological parameters can be accessed by installing the sCRM package and running sCRM::spp_dflts, which will bring up a tibble object with all the relevant information.

If performing a collision risk assessment in UK waters, default biological data for the following parameters can be obtained from the sCRM package:

flt_speed_pars, body_lt_pars, wing_span_pars, avoid_bsc_pars, avoid_ext_pars, noct_act_pars, flight_type, gen_fhd_boots

Other parameters around the species of interest need to be derived from site-based surveys:

prop_crh_pars, bird_dens_dt, and site_fhd_boots

All wind farm parameters need to be obtained by the wind farm developers:

n_blades, air_gap_pars, rtr_radius_pars, bld_width_pars, bld_pitch_pars, rtn_speed_pars, windspd_pars, trb_wind_avbl, trb_downtime_pars, wf_n_trbs, wf_width, wf_latitude, tidal_offset, season_specs, bld_chord_prf, lrg_arr_corr

The following parameters refer to the outputs:

out_format, out_sampled_pars, out_period, verbose, log_file

More information on input parameter specifics can be found in the vignettes for stoch_crm and band_crm.

Outputs

Once the collision risk model is run, the key outputs are presented as a table which contains the mean, standard deviation and median number of collisions summarised by month, season, or year. Quantiles of the bootstrapped collisions are also presented in the tables. These tables are accessed through calling from the model object. Run the Examples to view exemplar outputs.

stochOUT <- stochLAB::stoch_crm(...)

stochOUT$collisions$opt1 #For outputs from option 1 of the stochastic collision risk model 
stochOUT$collisions$opt2 #For outputs from option 2 of the stochastic collision risk model 
stochOUT$collisions$opt3 #For outputs from option 3 of the stochastic collision risk model 

Examples

Simple example

This is a basic example of running the stochastic collision model for one seabird species and one turbine/wind-farm scenario, with fictional input parameter data.

library(stochLAB)

# ------------------------------------------------------
# Setting some of the required inputs upfront

b_dens <- data.frame(
  month = month.abb,
  mean = runif(12, 0.8, 1.5),
  sd = runif(12, 0.2, 0.3))

# Generic FHD bootstraps for one species, from Johnson et al (2014)
fhd_boots <- generic_fhd_bootstraps[[1]]

# wind speed vs rotation speed vs pitch
wind_rtn_ptch <- data.frame(
  wind_speed = seq_len(30),
  rtn_speed = 10/(30:1),
  bld_pitch = c(rep(90, 4), rep(0, 8), 5:22))

# wind availability
windavb <- data.frame(
  month = month.abb,
  pctg = runif(12, 85, 98))

# maintenance downtime
dwntm <- data.frame(
  month = month.abb,
  mean = runif(12, 6, 10),
  sd = rep(2, 12))

# seasons specification
seas_dt <- data.frame(
  season_id = c("a", "b", "c"),
  start_month = c("Jan", "May", "Oct"), end_month = c("Apr", "Sep", "Dec"))

# ----------------------------------------------------------
# Run stochastic CRM, treating rotor radius, air gap and
# blade width as fixed parameters (i.e. not stochastic)

stoch_crm(
  model_options = c(1, 2, 3),
  n_iter = 1000,
  flt_speed_pars = data.frame(mean = 7.26, sd = 1.5),
  body_lt_pars = data.frame(mean = 0.39, sd = 0.005),
  wing_span_pars = data.frame(mean = 1.08, sd = 0.04),
  avoid_bsc_pars = data.frame(mean = 0.99, sd = 0.001),
  avoid_ext_pars = data.frame(mean = 0.96, sd = 0.002),
  noct_act_pars = data.frame(mean = 0.033, sd = 0.005),
  prop_crh_pars = data.frame(mean = 0.06, sd = 0.009),
  bird_dens_opt = "tnorm",
  bird_dens_dt = b_dens,
  flight_type = "flapping",
  prop_upwind = 0.5,
  gen_fhd_boots = fhd_boots,
  n_blades = 3,
  rtr_radius_pars = data.frame(mean = 80, sd = 0), # sd = 0, rotor radius is fixed
  air_gap_pars = data.frame(mean = 36, sd = 0),    # sd = 0, air gap is fixed
  bld_width_pars = data.frame(mean = 8, sd = 0),   # sd = 0, blade width is fixed
  rtn_pitch_opt = "windSpeedReltn",
  windspd_pars = data.frame(mean = 7.74, sd = 3),
  rtn_pitch_windspd_dt = wind_rtn_ptch,
  trb_wind_avbl = windavb,
  trb_downtime_pars = dwntm,
  wf_n_trbs = 200,
  wf_width = 15,
  wf_latitude = 56.9,
  tidal_offset = 2.5,
  lrg_arr_corr = TRUE,
  verbose = TRUE,
  seed = 1234,
  out_format = "summaries",
  out_sampled_pars = TRUE,
  out_period = "seasons",
  season_specs = seas_dt,
  log_file = NULL#paste0(getwd(), "scrm_example.log")
)
#> 
#> ── Stochastic CRM ──
#> 
#> ℹ Checking inputs✔ Checking inputs [157ms]
#> ℹ Preparing data✔ Preparing data [286ms]
#> ℹ Sampling parameters✔ Sampling parameters [847ms]
#> ⠙ Calculating collisions | 3/1000 iterations⠹ Calculating collisions | 85/1000 iterations⠸ Calculating collisions | 141/1000 iterations⠼ Calculating collisions | 200/1000 iterations⠴ Calculating collisions | 255/1000 iterations⠦ Calculating collisions | 312/1000 iterations⠧ Calculating collisions | 362/1000 iterations⠇ Calculating collisions | 413/1000 iterations⠏ Calculating collisions | 467/1000 iterations⠋ Calculating collisions | 526/1000 iterations⠙ Calculating collisions | 584/1000 iterations⠹ Calculating collisions | 639/1000 iterations⠸ Calculating collisions | 695/1000 iterations⠼ Calculating collisions | 753/1000 iterations⠴ Calculating collisions | 803/1000 iterations⠦ Calculating collisions | 857/1000 iterations⠧ Calculating collisions | 913/1000 iterations⠇ Calculating collisions | 966/1000 iterations✔ Calculating collisions | 1000/1000 iterations [4s]
#> ℹ Sorting outputs✔ Sorting outputs [1.4s]
#> ✔ Job done!
#> $collisions
#> $collisions$opt1
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 a         Jan_Apr  32.0  14.4   32.8     8.22    20.9    41.4     59.0    80.3
#> 2 b         May_Sep  63.6  28.4   64.8    17.5     42.3    83.5    119.    147. 
#> 3 c         Oct_Dec  21.8  10.1   22.2     5.86    14.1    28.0     42.1    55.5
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> $collisions$opt2
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 a         Jan_Apr 0.832 1.47   0.449   0.0748   0.267   0.741     5.87   13.0 
#> 2 b         May_Sep 1.65  2.85   0.910   0.154    0.520   1.52     10.7    22.3 
#> 3 c         Oct_Dec 0.566 0.986  0.304   0.0534   0.182   0.511     4.01    8.39
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> $collisions$opt3
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 a         Jan_Apr 0.400 0.901  0.163   0.0398  0.104    0.289     3.46    7.50
#> 2 b         May_Sep 0.792 1.73   0.336   0.0778  0.207    0.567     6.35   13.5 
#> 3 c         Oct_Dec 0.271 0.602  0.112   0.0250  0.0696   0.200     2.09    5.16
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> 
#> $sampled_pars
#> $sampled_pars$air_gap
#> # A tibble: 1 × 5
#>    mean    sd median pctl_2.5 pctl_97.5
#>   <dbl> <dbl>  <dbl>    <dbl>     <dbl>
#> 1    36     0     36       36        36
#> 
#> $sampled_pars$bld_width
#> # A tibble: 1 × 5
#>    mean    sd median pctl_2.5 pctl_97.5
#>   <dbl> <dbl>  <dbl>    <dbl>     <dbl>
#> 1     8     0      8        8         8
#> 
#> $sampled_pars$body_lt
#> # A tibble: 1 × 5
#>    mean      sd median pctl_2.5 pctl_97.5
#>   <dbl>   <dbl>  <dbl>    <dbl>     <dbl>
#> 1 0.390 0.00499  0.390    0.380     0.400
#> 
#> $sampled_pars$flt_speed
#> # A tibble: 1 × 5
#>    mean    sd median pctl_2.5 pctl_97.5
#>   <dbl> <dbl>  <dbl>    <dbl>     <dbl>
#> 1  7.28  1.47   7.28     4.30      10.0
#> 
#> $sampled_pars$noct_actv
#> # A tibble: 1 × 5
#>     mean      sd median pctl_2.5 pctl_97.5
#>    <dbl>   <dbl>  <dbl>    <dbl>     <dbl>
#> 1 0.0333 0.00498 0.0333   0.0241    0.0436
#> 
#> $sampled_pars$rtr_radius
#> # A tibble: 1 × 5
#>    mean    sd median pctl_2.5 pctl_97.5
#>   <dbl> <dbl>  <dbl>    <dbl>     <dbl>
#> 1    80     0     80       80        80
#> 
#> $sampled_pars$wing_span
#> # A tibble: 1 × 5
#>    mean     sd median pctl_2.5 pctl_97.5
#>   <dbl>  <dbl>  <dbl>    <dbl>     <dbl>
#> 1  1.08 0.0398   1.08     1.00      1.16
#> 
#> $sampled_pars$hub_height
#> # A tibble: 1 × 5
#>    mean    sd median pctl_2.5 pctl_97.5
#>   <dbl> <dbl>  <dbl>    <dbl>     <dbl>
#> 1   116     0    116      116       116
#> 
#> $sampled_pars$dens_mth
#> # A tibble: 12 × 6
#>    period  mean    sd median pctl_2.5 pctl_97.5
#>    <chr>  <dbl> <dbl>  <dbl>    <dbl>     <dbl>
#>  1 Jan    1.35  0.227  1.35     0.926      1.81
#>  2 Feb    0.974 0.275  0.965    0.461      1.52
#>  3 Mar    1.04  0.219  1.04     0.599      1.44
#>  4 Apr    1.27  0.253  1.27     0.789      1.78
#>  5 May    1.18  0.239  1.17     0.719      1.64
#>  6 Jun    0.926 0.225  0.930    0.448      1.38
#>  7 Jul    1.35  0.271  1.35     0.838      1.88
#>  8 Aug    1.20  0.296  1.20     0.608      1.80
#>  9 Sep    1.29  0.222  1.29     0.866      1.71
#> 10 Oct    1.19  0.243  1.19     0.719      1.66
#> 11 Nov    1.15  0.249  1.14     0.677      1.65
#> 12 Dec    1.42  0.284  1.42     0.855      1.96
#> 
#> $sampled_pars$prop_oper_mth
#> # A tibble: 12 × 6
#>    period  mean     sd median pctl_2.5 pctl_97.5
#>    <chr>  <dbl>  <dbl>  <dbl>    <dbl>     <dbl>
#>  1 Jan    0.801 0.0207  0.801    0.761     0.838
#>  2 Feb    0.841 0.0207  0.841    0.801     0.879
#>  3 Mar    0.806 0.0204  0.806    0.764     0.847
#>  4 Apr    0.791 0.0196  0.790    0.753     0.829
#>  5 May    0.833 0.0194  0.833    0.794     0.870
#>  6 Jun    0.805 0.0198  0.805    0.766     0.844
#>  7 Jul    0.907 0.0199  0.907    0.867     0.947
#>  8 Aug    0.895 0.0194  0.895    0.857     0.933
#>  9 Sep    0.819 0.0205  0.820    0.778     0.858
#> 10 Oct    0.865 0.0200  0.865    0.825     0.903
#> 11 Nov    0.800 0.0201  0.800    0.761     0.840
#> 12 Dec    0.822 0.0200  0.823    0.784     0.859
#> 
#> $sampled_pars$downtime
#> # A tibble: 12 × 6
#>    period  mean    sd median pctl_2.5 pctl_97.5
#>    <chr>  <dbl> <dbl>  <dbl>    <dbl>     <dbl>
#>  1 Jan     6.61  2.07   6.65     2.92      10.6
#>  2 Feb     8.96  2.07   8.96     5.10      12.9
#>  3 Mar     6.36  2.04   6.36     2.34      10.6
#>  4 Apr     8.18  1.96   8.22     4.39      12.0
#>  5 May     9.90  1.94   9.87     6.18      13.7
#>  6 Jun     6.76  1.98   6.73     2.90      10.7
#>  7 Jul     6.75  1.99   6.75     2.82      10.8
#>  8 Aug     6.31  1.94   6.28     2.49      10.1
#>  9 Sep     8.54  2.05   8.53     4.69      12.7
#> 10 Oct     7.71  2.00   7.72     3.91      11.8
#> 11 Nov     6.17  2.01   6.15     2.19      10.0
#> 12 Dec     6.94  2.00   6.84     3.24      10.7
#> 
#> $sampled_pars$wind_speed
#> # A tibble: 1 × 5
#>    mean    sd median pctl_2.5 pctl_97.5
#>   <dbl> <dbl>  <dbl>    <dbl>     <dbl>
#> 1  7.73  3.00   7.73     2.15      13.7
#> 
#> $sampled_pars$rtn_speed
#> # A tibble: 1 × 5
#>    mean     sd median pctl_2.5 pctl_97.5
#>   <dbl>  <dbl>  <dbl>    <dbl>     <dbl>
#> 1 0.428 0.0574  0.417    0.345     0.556
#> 
#> $sampled_pars$bld_pitch
#> # A tibble: 1 × 5
#>    mean    sd median pctl_2.5 pctl_97.5
#>   <dbl> <dbl>  <dbl>    <dbl>     <dbl>
#> 1 0.329 0.635      0        0      1.57
#> 
#> $sampled_pars$avoid_bsc
#> # A tibble: 1 × 5
#>    mean       sd median pctl_2.5 pctl_97.5
#>   <dbl>    <dbl>  <dbl>    <dbl>     <dbl>
#> 1 0.990 0.000985  0.990    0.988     0.992
#> 
#> $sampled_pars$avoid_ext
#> # A tibble: 1 × 5
#>    mean      sd median pctl_2.5 pctl_97.5
#>   <dbl>   <dbl>  <dbl>    <dbl>     <dbl>
#> 1 0.960 0.00203  0.960    0.956     0.964
#> 
#> $sampled_pars$prop_crh
#> # A tibble: 1 × 5
#>     mean      sd median pctl_2.5 pctl_97.5
#>    <dbl>   <dbl>  <dbl>    <dbl>     <dbl>
#> 1 0.0605 0.00904 0.0601   0.0441    0.0800
#> 
#> $sampled_pars$gen_fhd
#> # A tibble: 500 × 6
#>    height   mean      sd median pctl_2.5 pctl_97.5
#>     <dbl>  <dbl>   <dbl>  <dbl>    <dbl>     <dbl>
#>  1      0 0.163  0.0188  0.166    0.109     0.187 
#>  2      1 0.136  0.0129  0.138    0.0967    0.152 
#>  3      2 0.114  0.00855 0.115    0.0863    0.124 
#>  4      3 0.0950 0.00530 0.0963   0.0769    0.100 
#>  5      4 0.0794 0.00296 0.0803   0.0686    0.0816
#>  6      5 0.0664 0.00146 0.0669   0.0606    0.0670
#>  7      6 0.0556 0.00116 0.0558   0.0530    0.0567
#>  8      7 0.0465 0.00166 0.0466   0.0439    0.0490
#>  9      8 0.0390 0.00216 0.0389   0.0357    0.0432
#> 10      9 0.0327 0.00250 0.0324   0.0290    0.0386
#> # … with 490 more rows

Multiscenario example

This is an example usage of stoch_crm() for multiple scenarios. The aim is two-fold:

  1. Suggest how input parameter datasets used in the previous implementation can be reshaped to fit stoch_crm()’s interface. Suggested code is also relevant in the context of multiple scenarios applications, since the wide tabular structure of these datasets is likely the favoured format for users to compile input parameters under different scenarios.

  2. Propose a functional programming framework to run stoch_crm() for multiple species and wind-farm/turbines features.

Please note the example runs on fictional data.

library(stochLAB)

# --------------------------------------------------------- #
# ----      Reshaping into list-column data frames       ----
# --------------------------------------------------------- #
#
# --- bird features
bird_pars <- bird_pars_wide_example %>%
  dplyr::relocate(Flight, .after = dplyr::last_col()) %>%
  tidyr::pivot_longer(AvoidanceBasic:Prop_CRH_ObsSD) %>%
  dplyr::mutate(
    par = dplyr::if_else(grepl("SD|sd|Sd", name), "sd", "mean"),
    feature = gsub("SD|sd|Sd","", name)) %>%
  dplyr::select(-name) %>%
  tidyr::pivot_wider(names_from = par, values_from = value) %>%
  tidyr::nest(pars = c(mean, sd)) %>%
  tidyr::pivot_wider(names_from = feature, values_from = pars) %>%
  tibble::add_column(prop_upwind = 0.5)

# --- bird densities: provided as mean and sd Parameters for Truncated Normal lower
# bounded at 0
dens_pars <- dens_tnorm_wide_example %>%
  tibble::add_column(
    dens_opt = rep("tnorm", nrow(.)),
    .after = 1) %>%
  tidyr::pivot_longer(Jan:DecSD) %>%
  dplyr::mutate(
    par = dplyr::if_else(grepl("SD|sd|Sd", name), "sd", "mean"),
    month = gsub("SD|sd|Sd","", name)) %>%
  dplyr::select(-name) %>%
  tidyr::pivot_wider(names_from = par, values_from = value) %>%
  tidyr::nest(mth_dens = c(month, mean, sd))

# --- FHD data from Johnson et al (2014) for the species under analysis
gen_fhd_boots <- generic_fhd_bootstraps[bird_pars$Species]

# --- seasons definitions (made up)
season_dt <- list(
  Arctic_Tern = data.frame(
    season_id = c("breeding", "feeding", "migrating"),
    start_month = c("May", "Sep", "Jan"),
    end_month = c("Aug", "Dec", "Apr")),
  Black_headed_Gull = data.frame(
    season_id = c("breeding", "feeding", "migrating"),
    start_month = c("Jan", "May", "Oct"),
    end_month = c("Apr", "Sep", "Dec")),
  Black_legged_Kittiwake = data.frame(
    season_id = c("breeding", "feeding", "migrating"),
    start_month = c("Dec", "Mar", "Sep"),
    end_month = c("Feb", "Aug", "Nov")))

# --- turbine parameters
## address operation parameters first
trb_opr_pars <- turb_pars_wide_example %>%
  dplyr::select(TurbineModel, JanOp:DecOpSD) %>%
  tidyr::pivot_longer(JanOp:DecOpSD) %>%
  dplyr::mutate(
    month = substr(name, 1, 3),
    par = dplyr::case_when(
      grepl("SD|sd|Sd", name) ~ "sd",
      grepl("Mean|MEAN|mean", name) ~ "mean",
      TRUE ~ "pctg"
    )) %>%
  dplyr::select(-name) %>%
  tidyr::pivot_wider(names_from = par, values_from = value) %>%
  tidyr::nest(
    wind_avbl = c(month, pctg),
    trb_dwntm = c(month, mean, sd))

## address turbine features and subsequently merge operation parameters
trb_pars <- turb_pars_wide_example %>%
  dplyr::select(TurbineModel:windSpeedSD ) %>%
  dplyr::relocate(RotorSpeedAndPitch_SimOption, .after = 1) %>%
  tidyr::pivot_longer(RotorRadius:windSpeedSD) %>%
  dplyr::mutate(
    par = dplyr::if_else(grepl("SD|sd|Sd", name), "sd", "mean"),
    feature = gsub("(SD|sd|Sd)|(Mean|MEAN|mean)","", name)
  ) %>%
  dplyr::select(-name) %>%
  tidyr::pivot_wider(names_from = par, values_from = value) %>%
  tidyr::nest(pars = c(mean, sd)) %>%
  tidyr::pivot_wider(names_from = feature, values_from = pars) %>%
  dplyr::left_join(., trb_opr_pars)
#> Joining, by = "TurbineModel"

# --- windspeed, rotation speed and blade pitch relationship
wndspd_rtn_ptch_example
#>    wind_speed rtn_speed bld_pitch
#> 1           0       0.0        90
#> 2           1       0.0        90
#> 3           2       0.0        90
#> 4           3       6.8         0
#> 5           4       6.8         0
#> 6           5       6.8         0
#> 7           6       6.8         0
#> 8           7       6.8         0
#> 9           8       8.1         0
#> 10          9       9.1         0
#> 11         10       9.3         0
#> 12         11       9.4         4
#> 13         12       9.5         7
#> 14         13       9.7         9
#> 15         14       9.7        11
#> 16         15       9.9        13
#> 17         16      10.2        15
#> 18         17      10.2        16
#> 19         18      10.2        18
#> 20         19      10.2        19
#> 21         20      10.2        20
#> 22         21      10.2        22
#> 23         22      10.2        23
#> 24         23      10.2        24
#> 25         24      10.2        25
#> 26         25      10.2        26
#> 27         26      10.2        27
#> 28         27      10.2        28
#> 29         28      10.2        29
#> 30         29      10.2        30

# --- windfarm parameters
wf_pars <- data.frame(
  wf_id = c("wf_1", "wf_2"),
  n_turbs = c(200, 400),
  wf_width = c(4, 10),
  wf_lat = c(55.8, 55.0),
  td_off = c(2.5, 2),
  large_array_corr = c(FALSE, TRUE)
)


# -------------------------------------------------------------- #
# ----      Run stoch_crm() for multiple scenarios           ----
# -------------------------------------------------------------- #

# --- Set up scenario combinations
scenarios_specs <- tidyr::expand_grid(
  spp = bird_pars$Species,
  turb_id = trb_pars$TurbineModel,
  wf_id = wf_pars$wf_id) %>%
  tibble::add_column(
    scenario_id = paste0("scenario_", 1:nrow(.)),
    .before = 1)

# --- Set up progress bar for the upcoming iterative mapping step
pb <- progress::progress_bar$new(
  format = "Running Scenario: :what [:bar] :percent eta: :eta",
  width = 100,
  total = nrow(scenarios_specs))

# --- Map stoch_crm() to each scenario specification via purrr::pmap
outputs <- scenarios_specs %>%
  purrr::pmap(function(scenario_id, spp, turb_id, wf_id, ...){

    pb$tick(tokens = list(what = scenario_id))

    # params for current species
    c_spec <- bird_pars %>%
      dplyr::filter(Species == {{spp}}) 

    # density for current species
    c_dens <- dens_pars %>%
      dplyr::filter(Species == {{spp}})

    # params for current turbine scenario
    c_turb <- trb_pars %>%
      dplyr::filter(TurbineModel == {{turb_id}})

    # params for current windfarm scenario
    c_wf <- wf_pars %>%
      dplyr::filter(wf_id == {{wf_id}})

    # inputs in list-columns need to be unlisted, either via `unlist()` or
    # indexing `[[1]]`
    # switching off `verbose`, otherwise console will be 
    # cramped with log messages
    
    stoch_crm(
      model_options = c(1, 2, 3),
      n_iter = 1000,
      flt_speed_pars = c_spec$Flight_Speed[[1]],
      body_lt_pars = c_spec$Body_Length[[1]],
      wing_span_pars = c_spec$Wingspan[[1]],
      avoid_bsc_pars = c_spec$AvoidanceBasic[[1]],
      avoid_ext_pars = c_spec$AvoidanceExtended[[1]],
      noct_act_pars = c_spec$Nocturnal_Activity[[1]],
      prop_crh_pars = c_spec$Prop_CRH_Obs[[1]],
      bird_dens_opt = c_dens$dens_opt,
      bird_dens_dt = c_dens$mth_dens[[1]],
      flight_type = c_spec$Flight,
      prop_upwind = c_spec$prop_upwind,
      gen_fhd_boots = gen_fhd_boots[[spp]],
      n_blades = c_turb$Blades,
      rtr_radius_pars = c_turb$RotorRadius[[1]],
      air_gap_pars = c_turb$HubHeightAdd[[1]],
      bld_width_pars = c_turb$BladeWidth[[1]],
      rtn_pitch_opt = c_turb$RotorSpeedAndPitch_SimOption,
      bld_pitch_pars = c_turb$Pitch[[1]],
      rtn_speed_pars = c_turb$RotationSpeed[[1]],
      windspd_pars = c_turb$windSpeed[[1]],
      rtn_pitch_windspd_dt = wndspd_rtn_ptch_example,
      trb_wind_avbl = c_turb$wind_avbl[[1]],
      trb_downtime_pars = c_turb$trb_dwntm[[1]],
      wf_n_trbs = c_wf$n_turbs,
      wf_width = c_wf$wf_width,
      wf_latitude = c_wf$wf_lat,
      tidal_offset = c_wf$td_off,
      lrg_arr_corr = c_wf$large_array_corr,
      verbose = FALSE,
      seed = 1234,
      out_format = "summaries",
      out_sampled_pars = FALSE,
      out_period = "seasons",
      season_specs = season_dt[[spp]],
      log_file = NULL
    )
  })

# --- close progress bar
pb$terminate()

# --- identify elements of output list
names(outputs) <- scenarios_specs$scenario_id

outputs
#> $scenario_1
#> $scenario_1$opt1
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  May_Aug  984.  75.9   982.     847.    933.   1031.    1130.   1241.
#> 2 feeding   Sep_Dec  552.  41.6   551.     478.    523.    579.     634.    683.
#> 3 migrating Jan_Apr  626.  47.7   623.     541.    591.    658.     722.    780.
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> $scenario_1$opt2
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  May_Aug  60.7  67.3   41.9     2.41    25.3    65.7     293.    389.
#> 2 feeding   Sep_Dec  34.0  37.7   23.5     1.35    14.3    37.0     162.    217.
#> 3 migrating Jan_Apr  38.6  42.8   26.8     1.55    16.2    42.4     186.    249.
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> $scenario_1$opt3
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  May_Aug  17.9  24.8  10.5     0.394    5.92    17.9    106.    151. 
#> 2 feeding   Sep_Dec  10.1  13.9   5.86    0.221    3.35    10.0     59.0    84.5
#> 3 migrating Jan_Apr  11.4  15.8   6.77    0.251    3.79    11.5     66.9    93.8
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> 
#> $scenario_2
#> $scenario_2$opt1
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  May_Aug 1836. 137.   1831.    1586.   1743.   1921.    2098.   2301.
#> 2 feeding   Sep_Dec 1045.  76.4  1044.     909.    991.   1096.    1195.   1288.
#> 3 migrating Jan_Apr 1181.  87.6  1177.    1025.   1118.   1241.    1356.   1463.
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> $scenario_2$opt2
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  May_Aug 122.  132.    85.2     5.20    52.1   133.      574.    759.
#> 2 feeding   Sep_Dec  69.2  75.0   48.4     2.95    29.9    75.9     323.    430.
#> 3 migrating Jan_Apr  78.3  84.8   55.1     3.37    33.7    86.5     369.    491.
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> $scenario_2$opt3
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  May_Aug  35.9  48.7   21.4    0.848   12.2     36.1     208.    294.
#> 2 feeding   Sep_Dec  20.4  27.7   12.1    0.482    7.00    20.6     118.    167.
#> 3 migrating Jan_Apr  23.1  31.3   13.9    0.547    7.91    23.5     133.    185.
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> 
#> $scenario_3
#> $scenario_3$opt1
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  May_Aug 2131. 143.   2126.    1875.   2034.   2223.    2415.   2690.
#> 2 feeding   Sep_Dec 1149.  76.8  1143.    1011.   1095.   1197.    1302.   1446.
#> 3 migrating Jan_Apr 1300.  89.6  1292.    1131.   1239.   1357.    1491.   1638.
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> $scenario_3$opt2
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  May_Aug  53.7  77.6   30.1    0.894   17.0     53.9     347.    477.
#> 2 feeding   Sep_Dec  28.9  41.8   16.1    0.496    9.16    29.0     185.    257.
#> 3 migrating Jan_Apr  32.7  47.1   18.3    0.546   10.3     32.5     205.    291.
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> $scenario_3$opt3
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  May_Aug 14.4   25.7   6.47   0.124     3.37   12.7     109.    162. 
#> 2 feeding   Sep_Dec  7.74  13.8   3.48   0.0685    1.81    6.84     59.8    86.3
#> 3 migrating Jan_Apr  8.74  15.6   3.93   0.0756    2.05    7.65     66.9    96.0
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> 
#> $scenario_4
#> $scenario_4$opt1
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  May_Aug 3720.  240.  3713.    3290.   3560.   3872.    4188.   4654.
#> 2 feeding   Sep_Dec 2037.  131.  2025.    1801.   1944.   2122.    2297.   2540.
#> 3 migrating Jan_Apr 2297.  152.  2284.    2012.   2193.   2393.    2626.   2854.
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> $scenario_4$opt2
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  May_Aug 100.  142.    57.0     1.79    32.6   101.      633.    867.
#> 2 feeding   Sep_Dec  54.8  77.7   31.0     1.01    17.8    55.5     342.    474.
#> 3 migrating Jan_Apr  61.7  87.3   35.1     1.11    20.1    62.2     382.    531.
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> $scenario_4$opt3
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  May_Aug  26.8  47.1  12.3     0.249    6.47    23.9     199.    295.
#> 2 feeding   Sep_Dec  14.7  25.7   6.69    0.140    3.53    13.1     111.    160.
#> 3 migrating Jan_Apr  16.5  28.9   7.57    0.153    3.98    14.7     124.    177.
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> 
#> $scenario_5
#> $scenario_5$opt1
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  May_Aug 1176.  341.  1053.     825.    985.   1219.    2220.   2634.
#> 2 feeding   Sep_Dec  615.  176.   551.     430.    516.    640.    1136.   1338.
#> 3 migrating Jan_Apr  703.  202.   630.     489.    591.    731.    1323.   1551.
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> $scenario_5$opt2
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  May_Aug 0.837  2.75 0.131  0.000231  0.0341   0.390     8.68    31.9
#> 2 feeding   Sep_Dec 0.438  1.45 0.0687 0.000118  0.0180   0.202     4.66    17.0
#> 3 migrating Jan_Apr 0.500  1.63 0.0782 0.000136  0.0209   0.230     5.20    18.4
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> $scenario_5$opt3
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median  pctl_2.5 pctl_25 pctl_75 pctl_…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>     <dbl>   <dbl>   <dbl>   <dbl>   <dbl>
#> 1 breeding  May_Aug 0.221 0.795 0.0245 0.0000261 0.00602  0.0786    2.41    8.88
#> 2 feeding   Sep_Dec 0.116 0.418 0.0129 0.0000129 0.00319  0.0408    1.29    4.73
#> 3 migrating Jan_Apr 0.132 0.472 0.0147 0.0000151 0.00365  0.0462    1.44    5.12
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> 
#> $scenario_6
#> $scenario_6$opt1
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  May_Aug 2164.  568.  1961.    1557.   1840.   2263.    3874.   4500.
#> 2 feeding   Sep_Dec 1148.  298.  1043.     822.    977.   1210.    2021.   2323.
#> 3 migrating Jan_Apr 1310.  341.  1188.     934.   1117.   1370.    2325.   2688.
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> $scenario_6$opt2
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  May_Aug 1.64   5.28  0.266 0.000499  0.0711   0.779    17.1     59.5
#> 2 feeding   Sep_Dec 0.872  2.82  0.142 0.000254  0.0379   0.415     9.33    32.2
#> 3 migrating Jan_Apr 0.991  3.18  0.162 0.000295  0.0437   0.472    10.4     34.7
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> $scenario_6$opt3
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median  pctl_2.5 pctl_25 pctl_75 pctl_…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>     <dbl>   <dbl>   <dbl>   <dbl>   <dbl>
#> 1 breeding  May_Aug 0.433 1.53  0.0503 0.0000579 0.0126   0.157     4.77   16.6 
#> 2 feeding   Sep_Dec 0.230 0.817 0.0271 0.0000291 0.00672  0.0832    2.59    8.97
#> 3 migrating Jan_Apr 0.261 0.921 0.0304 0.0000337 0.00768  0.0947    2.88    9.68
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> 
#> $scenario_7
#> $scenario_7$opt1
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  Jan_Apr  429.  93.1   423.     270.    360.    490.     626.    767.
#> 2 feeding   May_Sep  697. 151.    685.     442.    588.    791.    1006.   1252.
#> 3 migrating Oct_Dec  266.  59.2   262.     164.    223.    303.     390.    498.
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> $scenario_7$opt2
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  Jan_Apr  257. 150.    223.     62.9   153.     320.     603.   1071.
#> 2 feeding   May_Sep  417. 244.    366.    100.    251.     517.     985.   1797.
#> 3 migrating Oct_Dec  159.  93.0   137.     37.8    94.0    199.     377.    649.
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> $scenario_7$opt3
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  Jan_Apr  28.2  25.9   20.9     4.02   12.5     34.1     86.4    239.
#> 2 feeding   May_Sep  45.9  42.4   34.3     6.51   20.3     55.1    145.     409.
#> 3 migrating Oct_Dec  17.5  16.0   12.8     2.48    7.78    21.8     54.6    144.
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> 
#> $scenario_8
#> $scenario_8$opt1
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  Jan_Apr  855.  186.   844.     539.    719.    977.    1248.   1531.
#> 2 feeding   May_Sep 1376.  299.  1352.     872.   1160.   1560.    1985.   2472.
#> 3 migrating Oct_Dec  534.  119.   526.     329.    448.    608.     782.    999.
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> $scenario_8$opt2
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  Jan_Apr  536.  307.   468.    135.     324.    668.    1246.   2183.
#> 2 feeding   May_Sep  862.  494.   760.    213.     524.   1067.    2013.   3624.
#> 3 migrating Oct_Dec  334.  192.   290.     81.5    200.    418.     783.   1330.
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> $scenario_8$opt3
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  Jan_Apr  58.6  52.8   43.8     8.62    26.4    71.2     178.    485.
#> 2 feeding   May_Sep  94.4  85.7   71.2    14.0     42.5   114.      295.    820.
#> 3 migrating Oct_Dec  36.6  32.8   27.1     5.36    16.5    45.6     113.    293.
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> 
#> $scenario_9
#> $scenario_9$opt1
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  Jan_Apr  571. 123.    563.     360.    484.    643.     818.   1015.
#> 2 feeding   May_Sep  965. 210.    953.     615.    815.   1089.    1428.   1738.
#> 3 migrating Oct_Dec  354.  78.1   349.     223.    299.    401.     511.    646.
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> $scenario_9$opt2
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  Jan_Apr  194. 140.   157.      32.9   100.     245.     539.   1050.
#> 2 feeding   May_Sep  329. 238.   265.      55.1   169.     414.     905.   1788.
#> 3 migrating Oct_Dec  121.  87.9   97.6     20.1    62.0    153.     332.    682.
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> $scenario_9$opt3
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  Jan_Apr  23.0  25.6  15.7      2.36    8.83    27.4     79.6    265.
#> 2 feeding   May_Sep  38.9  43.5  26.3      3.96   15.0     47.4    137.     472.
#> 3 migrating Oct_Dec  14.3  16.2   9.75     1.46    5.51    17.2     48.9    183.
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> 
#> $scenario_10
#> $scenario_10$opt1
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  Jan_Apr 1136.  245.  1120.     717.    963.   1279.    1628.   2019.
#> 2 feeding   May_Sep 1901.  413.  1875.    1212.   1605.   2145.    2811.   3422.
#> 3 migrating Oct_Dec  709.  156.   698.     446.    598.    802.    1024.   1294.
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> $scenario_10$opt2
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  Jan_Apr  404.  286.   328.     70.2    211.    509.    1101.   2131.
#> 2 feeding   May_Sep  676.  481.   547.    116.     351.    852.    1833.   3592.
#> 3 migrating Oct_Dec  252.  181.   205.     43.2    131.    320.     686.   1393.
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> $scenario_10$opt3
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  Jan_Apr  47.6  52.0   32.8     5.05    18.6    56.9     164.    535.
#> 2 feeding   May_Sep  79.8  87.6   54.3     8.36    31.2    95.8     279.    944.
#> 3 migrating Oct_Dec  29.8  33.2   20.5     3.15    11.7    35.6     101.    373.
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> 
#> $scenario_11
#> $scenario_11$opt1
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  Jan_Apr  570. 121.    558.     366.    484.    647.     826.    979.
#> 2 feeding   May_Sep  981. 211.    957.     624.    830.   1115.    1431.   1682.
#> 3 migrating Oct_Dec  347.  76.0   344.     221.    293.    395.     515.    606.
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> $scenario_11$opt2
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  Jan_Apr  24.7  40.3  11.5     0.787    4.98    29.1    111.     440.
#> 2 feeding   May_Sep  42.5  69.2  19.8     1.35     8.56    48.3    189.     768.
#> 3 migrating Oct_Dec  15.0  24.2   7.02    0.486    3.02    17.4     67.2    263.
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> $scenario_11$opt3
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  Jan_Apr  3.52 11.1   0.933   0.0455   0.337    2.66     21.6   133. 
#> 2 feeding   May_Sep  6.04 19.0   1.57    0.0814   0.584    4.48     36.6   233. 
#> 3 migrating Oct_Dec  2.13  6.60  0.568   0.0283   0.207    1.57     13.3    75.9
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> 
#> $scenario_12
#> $scenario_12$opt1
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  Jan_Apr 1135.  241.  1111.     728.    964.   1287.    1645.   1949.
#> 2 feeding   May_Sep 1932.  415.  1885.    1229.   1635.   2197.    2819.   3315.
#> 3 migrating Oct_Dec  696.  152.   689.     442.    587.    791.    1032.   1212.
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> $scenario_12$opt2
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  Jan_Apr  50.9  81.9   24.0     1.68   10.5     60.3     229.    887.
#> 2 feeding   May_Sep  86.6 139.    41.0     2.85   17.8     99.1     384.   1534.
#> 3 migrating Oct_Dec  31.2  49.5   14.8     1.04    6.37    36.3     139.    535.
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> $scenario_12$opt3
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  Jan_Apr  7.17  22.2   1.95   0.0973   0.707    5.54     43.2    268.
#> 2 feeding   May_Sep 12.2   37.7   3.25   0.172    1.22     9.21     73.2    464.
#> 3 migrating Oct_Dec  4.38  13.4   1.19   0.0606   0.439    3.28     27.1    154.
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> 
#> $scenario_13
#> $scenario_13$opt1
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  Dec_Feb  21.5  4.95   21.0     13.1    18.0    24.4     32.0    39.7
#> 2 feeding   Mar_Aug  60.9 13.9    59.8     37.2    50.8    69.7     91.1   112. 
#> 3 migrating Sep_Nov  24.4  5.70   24.0     14.9    20.3    27.8     37.0    45.4
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> $scenario_13$opt2
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  Dec_Feb  21.6  4.72   21.3     13.2    18.4    24.6     31.5    36.8
#> 2 feeding   Mar_Aug  61.3 13.3    60.9     37.6    52.2    69.8     89.0   106. 
#> 3 migrating Sep_Nov  24.6  5.48   24.3     14.8    20.9    27.9     36.1    42.8
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> $scenario_13$opt3
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  Dec_Feb  18.6  3.99   18.7     11.4    15.9    21.1     27.2    35.6
#> 2 feeding   Mar_Aug  52.9 11.3    52.9     32.7    45.1    59.8     77.3   100. 
#> 3 migrating Sep_Nov  21.2  4.68   21.1     13.1    18.0    24.0     31.4    41.3
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> 
#> $scenario_14
#> $scenario_14$opt1
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  Dec_Feb  43.5  10.0   42.6     26.6    36.5    49.5     64.8    80.5
#> 2 feeding   Mar_Aug 121.   27.6  119.      73.7   101.    138.     181.    223. 
#> 3 migrating Sep_Nov  49.0  11.4   48.1     30.0    40.8    55.7     74.3    91.2
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> $scenario_14$opt2
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  Dec_Feb  46.0  9.96   45.4     28.2    39.2    52.4     66.7    78.3
#> 2 feeding   Mar_Aug 128.  27.6   127.      78.7   109.    145.     185.    219. 
#> 3 migrating Sep_Nov  51.8 11.5    51.3     31.3    44.2    58.8     75.8    89.4
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> $scenario_14$opt3
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  Dec_Feb  39.6  8.40   39.7     24.3    33.9    45.0     57.7    75.1
#> 2 feeding   Mar_Aug 110.  23.3   110.      68.7    94.2   125.     160.    206. 
#> 3 migrating Sep_Nov  44.7  9.76   44.6     27.7    38.1    50.5     65.7    85.9
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> 
#> $scenario_15
#> $scenario_15$opt1
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  Dec_Feb  30.8  6.55   30.3     20.0    26.2    34.7     45.5    53.8
#> 2 feeding   Mar_Aug  88.3 18.8    86.9     57.3    75.0    99.5    130.    157. 
#> 3 migrating Sep_Nov  34.5  7.50   33.9     22.1    29.1    38.9     51.6    60.5
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> $scenario_15$opt2
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  Dec_Feb  16.7  3.64   16.5     10.1    14.0    19.1     23.8    29.4
#> 2 feeding   Mar_Aug  47.8 10.4    47.6     29.1    40.2    54.7     68.6    83.1
#> 3 migrating Sep_Nov  18.6  4.16   18.6     11.2    15.7    21.3     27.0    33.1
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> $scenario_15$opt3
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  Dec_Feb  15.4  3.59   15.4     9.16    12.9    17.5     22.1    31.7
#> 2 feeding   Mar_Aug  44.1 10.3    44.1    26.2     37.0    50.2     62.9    91.6
#> 3 migrating Sep_Nov  17.2  4.09   17.3    10.2     14.5    19.5     25.1    37.2
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> 
#> $scenario_16
#> $scenario_16$opt1
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  Dec_Feb  62.3  13.3   61.3     40.4    53.0    70.3     92.2    109.
#> 2 feeding   Mar_Aug 175.   37.3  172.     114.    149.    197.     258.     311.
#> 3 migrating Sep_Nov  69.1  15.0   68.0     44.2    58.3    78.1    104.     121.
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> $scenario_16$opt2
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  Dec_Feb  35.4  7.67   35.0     21.5    29.9    40.6     50.5    62.3
#> 2 feeding   Mar_Aug  99.4 21.5    98.9     60.8    83.8   114.     143.    173. 
#> 3 migrating Sep_Nov  39.2  8.67   39.1     23.6    33.1    44.8     56.8    69.4
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> $scenario_16$opt3
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  Dec_Feb  32.7  7.54   32.7     19.6    27.6    37.1     46.9    66.3
#> 2 feeding   Mar_Aug  91.9 21.1    91.8     54.9    77.1   104.     131.    188. 
#> 3 migrating Sep_Nov  36.3  8.51   36.3     21.5    30.6    40.9     52.7    77.3
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> 
#> $scenario_17
#> $scenario_17$opt1
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  Dec_Feb  27.1  6.46   26.8     16.4    22.5    31.3     40.4    51.6
#> 2 feeding   Mar_Aug  81.3 19.3    80.0     49.3    67.2    93.3    122.    157. 
#> 3 migrating Sep_Nov  31.0  7.53   30.4     18.5    25.4    35.7     47.4    58.1
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> $scenario_17$opt2
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  Dec_Feb  1.10 0.470   1.04    0.417   0.761    1.34     2.18    3.68
#> 2 feeding   Mar_Aug  3.28 1.40    3.12    1.24    2.27     4.02     6.51   11.0 
#> 3 migrating Sep_Nov  1.25 0.541   1.19    0.471   0.869    1.54     2.51    4.42
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> $scenario_17$opt3
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  Dec_Feb 0.774 0.408  0.725    0.283   0.520   0.957     1.56    4.85
#> 2 feeding   Mar_Aug 2.32  1.21   2.18     0.855   1.56    2.88      4.64   14.1 
#> 3 migrating Sep_Nov 0.884 0.467  0.840    0.333   0.593   1.10      1.78    5.34
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> 
#> $scenario_18
#> $scenario_18$opt1
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  Dec_Feb  54.9  13.1   54.2     33.2    45.5    63.3     81.7    104.
#> 2 feeding   Mar_Aug 161.   38.2  159.      97.8   133.    185.     242.     310.
#> 3 migrating Sep_Nov  62.2  15.1   61.0     37.2    51.0    71.7     95.0    117.
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> $scenario_18$opt2
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  Dec_Feb  2.33 0.992   2.22    0.889    1.62    2.84     4.63    7.73
#> 2 feeding   Mar_Aug  6.84 2.90    6.50    2.61     4.73    8.38    13.6    22.7 
#> 3 migrating Sep_Nov  2.64 1.13    2.52    0.998    1.83    3.24     5.29    9.20
#> # … with abbreviated variable name ¹​pctl_97.5
#> 
#> $scenario_18$opt3
#> # A tibble: 3 × 10
#>   season_id period   mean    sd median pctl_2.5 pctl_25 pctl_75 pctl_9…¹ pctl_99
#>   <chr>     <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>   <dbl>    <dbl>   <dbl>
#> 1 breeding  Dec_Feb  1.65 0.855   1.54    0.606    1.11    2.03     3.31    10.1
#> 2 feeding   Mar_Aug  4.83 2.49    4.55    1.79     3.26    6.00     9.54    28.7
#> 3 migrating Sep_Nov  1.86 0.969   1.77    0.707    1.25    2.31     3.68    11.0
#> # … with abbreviated variable name ¹​pctl_97.5

Band model example

This is an example usage of band_crm(). This is for a single species and single set of turbine parameters. This replicates the Band (2012) worksheet. The stoch_crm() function wraps around this function, where band_crm() acts in essence as a single draw of stoch_crm().

Please note the example runs on fictional data.

library(stochLAB)
# ------------------------------------------------------
# Run with arbitrary parameter values, for illustration
# ------------------------------------------------------

# Setting a dataframe of parameters to draw from
params <- data.frame(
  flight_speed = 13.1,         # Flight speed in m/s
  body_lt = 0.85,              # Body length in m
  wing_span = 1.01,            # Wing span in m
  flight_type = "flapping",    # flapping or gliding flight
  avoid_rt_basic = 0.989,      # avoidance rate for option 1 and 2
  avoid_rt_ext = 0.981,        # extended avoidance rate for option 3 and 4
  noct_activity = 0.5,         # proportion of day birds are inactive
  prop_crh_surv = 0.13,        # proportion of birds at collision risk height (option 1 only)
  prop_upwind = 0.5,           # proportion of flights that are upwind
  rotor_speed = 15,            # rotor speed in m/s
  rotor_radius = 120,          # radius of turbine in m
  blade_width = 5,             # width of turbine blades at thickest point in m
  blade_pitch = 15,            # mean radius pitch in Radians
  n_blades = 3,                # total number of blades per turbine
  hub_height = 150,            # height of hub in m above HAT
  n_turbines = 100,            # number of turbines in the wind farm
  wf_width = 52,               # width across longest section of wind farm
  wf_latitude = 56,            # latitude of centroid of wind farm
  tidal_offset = 2.5,          # mean tidal offset from HAT of the wind farm
  lrg_arr_corr = TRUE          # apply a large array correction?
)

# Monthly bird densities
b_dens <- data.frame(
  month = month.abb,
  dens = runif(12, 0.8, 1.5)
)

# flight height distribution from Johnston et al
gen_fhd_dat <- Johnston_Flight_heights_SOSS %>%
  dplyr::filter(variable=="Gannet.est") %>%
  dplyr::select(height,prop)

# monthly operational time of the wind farm
turb_oper <- data.frame(
  month = month.abb,
  prop_oper = runif(12,0.5,0.8)
)


stochLAB::band_crm(
  model_options = c(1,2,3),
  flight_speed = params$flight_speed,
  body_lt = params$body_lt,
  wing_span = params$wing_span,
  flight_type = params$flight_type,
  avoid_rt_basic = params$avoid_rt_basic,
  avoid_rt_ext = params$avoid_rt_ext,
  noct_activity = params$noct_activity,
  prop_crh_surv = params$prop_crh_surv,
  dens_month = b_dens,
  prop_upwind = params$prop_upwind,
  gen_fhd = gen_fhd_dat,
  site_fhd = NULL,  # Option 4 only
  rotor_speed = params$rotor_speed,
  rotor_radius = params$rotor_radius,
  blade_width = params$blade_width,
  blade_pitch = params$blade_pitch,
  n_blades = params$n_blades,
  hub_height = params$hub_height,
  chord_prof = chord_prof_5MW,
  n_turbines = params$n_turbines,
  turb_oper_month = turb_oper,
  wf_width = params$wf_width,
  wf_latitude = params$wf_latitude,
  tidal_offset = params$tidal_offset,
  lrg_arr_corr = params$lrg_arr_corr
  )
#> # A tibble: 12 × 4
#>    month  opt1  opt2  opt3
#>    <chr> <dbl> <dbl> <dbl>
#>  1 Jan    98.6  25.4 10.4 
#>  2 Feb    53.2  13.7  5.61
#>  3 Mar    83.7  21.6  8.83
#>  4 Apr    61.4  15.8  6.48
#>  5 May   117.   30.2 12.4 
#>  6 Jun    91.7  23.6  9.67
#>  7 Jul   114.   29.3 12.0 
#>  8 Aug    91.1  23.5  9.61
#>  9 Sep   106.   27.3 11.2 
#> 10 Oct    64.1  16.5  6.77
#> 11 Nov    60.7  15.7  6.40
#> 12 Dec    73.4  18.9  7.75
Metadata

Version

1.1.2

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows