Description
Interface for MOA Stream Clustering Algorithms.
Description
Interface for data stream clustering algorithms implemented in the MOA (Massive Online Analysis) framework (Albert Bifet, Geoff Holmes, Richard Kirkby, Bernhard Pfahringer (2010). MOA: Massive Online Analysis, Journal of Machine Learning Research 11: 1601-1604).
README.md
R package streamMOA - Interface for MOA Stream Clustering Algorithms
Interface for data stream clustering algorithms implemented in the MOA (Massive Online Analysis) framework. This is an extension package for stream.
Installation
Stable CRAN version: Install from within R with
install.packages("streamMOA")
Current development version: Install from r-universe.
install.packages("streamMOA",
repos = c("https://mhahsler.r-universe.dev". "https://cloud.r-project.org/"))
Example
Create 3 clusters with 5% noise.
library(streamMOA)
stream <- DSD_Gaussians(k = 3, d = 2, noise = 0.05)
Cluster with CluStream.
clustream <- DSC_CluStream(m = 50, k = 3)
update(clustream, stream, 500)
clustream
## CluStream
## Class: moa/clusterers/clustream/WithKmeans, DSC_MOA, DSC_Micro, DSC
## Number of micro-clusters: 50
## Number of macro-clusters: 3
Plot micro-clusters.
plot(clustream, stream)
Further Information
- streamMOA package vignette with complete examples.
- Reference manual.