MyNixOS website logo
Description

Survival Control Charts Estimation Software.

Quality control charts for survival outcomes. Allows users to construct the Continuous Time Generalized Rapid Response CUSUM (CGR-CUSUM) <doi:10.1093/biostatistics/kxac041>, the Biswas & Kalbfleisch (2008) <doi:10.1002/sim.3216> CUSUM, the Bernoulli CUSUM and the risk-adjusted funnel plot for survival data <doi:10.1002/sim.1970>. These procedures can be used to monitor survival processes for a change in the failure rate.

success

Lifecycle:stable Project Status: Active – The project has reached a stable, usablestate and is being activelydeveloped. R-CMD-check CRANstatus CRAN RStudio mirrordownloads GitHub Repostars Biostatistics Codecov testcoverage

SUrvival Control Chart EStimation Software

The goal of the package is to allow easy applications of continuous time CUSUM procedures on survival data. Specifically, the Biswas & Kalbfleisch CUSUM (2008) and the CGR-CUSUM (Gomon et al. 2022).

Besides continuous time procedures, it is also possible to construct the Bernoulli (binary) CUSUM and funnel plot (Spiegelhalter 2005) on survival data.

Installation

You can install the released version of success from CRAN with:

install.packages("success")

And the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("d-gomon/success")

CGR-CUSUM Example

This is a basic example which shows you how to construct a CGR-CUSUM chart on a hospital from the attached data set “surgerydat”:

dat <- subset(surgerydat, unit == 1)
exprfit <- as.formula("Surv(survtime, censorid) ~ age + sex + BMI")
tcoxmod <- coxph(exprfit, data = surgerydat)

cgr <- cgr_cusum(data = dat, coxphmod = tcoxmod, stoptime = 200)
plot(cgr)

You can plot the figure with control limit h = 10 by using:

plot(cgr, h = 10)

And determine the runlength of the chart when using control limit h = 10:

runlength(cgr, h = 10)
#> [1] 151

Using a control limit of h = 10 Hospital 1 would be detected by a CGR-CUSUM 151 days after the first patient entered the study.

References

Gomon D., Putter H., Nelissen R.G.H.H., van der Pas S (2022): CGR-CUSUM: A Continuous time Generalized Rapid Response Cumulative Sum chart, Biostatistics

Biswas P. and Kalbfleisch J.D. (2008): A risk-adjusted CUSUM in continuous time based on the Cox model, Statistics in Medicine

Spiegelhalter D.J. (2005): Funnel plots for comparing institutional performance, Statistics in Medicine.

Metadata

Version

1.1.0

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows