MyNixOS website logo
Description

Tools for Reshaping Text.

Tools that can be used to reshape and restructure text data.

textshape

Project Status: Inactive – The project has reached a stable, usable state but is no longer being actively developed; support/maintenance will be provided as time allows.

textshape is small suite of text reshaping and restructuring functions. Many of these functions are descended from tools in the qdapTools package. This brings reshaping tools under one roof with specific functionality of the package limited to text reshaping.

Other R packages provide some of the same functionality. textshape differs from these packages in that it is designed to help the user take unstructured data (or implicitly structured), extract it into a structured format, and then restructure into common text analysis formats for use in the next stage of the text analysis pipeline. The implicit structure of seemingly unstructured data is often detectable/expressible by the researcher. textshape provides tools (e.g., split_match) to enable the researcher to convert this tacit knowledge into a form that can be used to reformat data into more structured formats. This package is meant to be used jointly with the textclean package, which provides cleaning and text normalization functionality.

Table of Contents

Functions

Most of the functions split, expand, grab, or tidy a vector, list, data.frame, or DocumentTermMatrix. The combine, duration, mtabulate, & flatten functions are notable exceptions. The table below describes the functions and their use:

FunctionUsed OnDescription
combinevector, list, data.frameCombine and collapse elements
tidy_listlist of vectors or data.framesRow bind a list and repeat list names as id column
tidy_vectorvectorColumn bind a named atomic vector’s names and values
tidy_tabletableColumn bind a table’s names and values
tidy_matrixmatrixStack values, repeat column row names accordingly
tidy_dtm/tidy_tdmDocumentTermMatrixTidy format DocumentTermMatrix/TermDocumentMatrix
tidy_colo_dtm/tidy_colo_tdmDocumentTermMatrixTidy format of collocating words from a DocumentTermMatrix/TermDocumentMatrix
durationvector, data.frameGet duration (start-end times) for turns of talk in n words
from_tovector, data.framePrepare speaker data for a flow network
mtabulatevector, list, data.frameDataframe/list version of tabulate to produce count matrix
flattenlistFlatten nested, named list to single tier
unnest_textdata.frameUnnest a nested text column
split_indexvector, list, data.frameSplit at specified indices
split_matchvectorSplit vector at specified character/regex match
split_portionvector*Split data into portioned chunks
split_runvector, data.frameSplit runs (e.g., “aaabbbbcdddd”)
split_sentencevector, data.frameSplit sentences
split_speakerdata.frameSplit combined speakers (e.g., “Josh, Jake, Jim”)
split_tokenvector, data.frameSplit words and punctuation
split_transcriptvectorSplit speaker and dialogue (e.g., “greg: Who me”)
split_wordvector, data.frameSplit words
grab_indexvector, data.frame, listGrab from an index up to a second index
grab_matchvector, data.frame, listGrab from a regex match up to a second regex match
column_to_rownamesdata.frameAdd a column as rownames
cluster_matrixmatrixReorder column/rows of a matrix via hierarchical clustering

*Note:Text vector accompanied by aggregating grouping.var argument, which can be in the form of a vector, list, or data.frame

Installation

To download the development version of textshape:

Download the zip ball or tar ball, decompress and run R CMD INSTALL on it, or use the pacman package to install the development version:

if (!require("pacman")) install.packages("pacman")
pacman::p_load_gh("trinker/textshape")

Contact

You are welcome to:

Contributing

Contributions are welcome from anyone subject to the following rules:

  • Abide by the code of conduct.
  • Follow the style conventions of the package (indentation, function & argument naming, commenting, etc.)
  • All contributions must be consistent with the package license (GPL-2)
  • Submit contributions as a pull request. Clearly state what the changes are and try to keep the number of changes per pull request as low as possible.
  • If you make big changes, add your name to the ‘Author’ field.

Examples

The main shaping functions can be broken into the categories of (a) binding, (b) combining, (c) tabulating, (d) spanning, (e) splitting, (f) grabbing & (e) tidying. The majority of functions in textshape fall into the category of splitting and expanding (the semantic opposite of combining). These sections will provide example uses of the functions from textshape within the three categories.

Loading Dependencies

if (!require("pacman")) install.packages("pacman")
pacman::p_load(tidyverse, magrittr, ggstance, viridis, gridExtra, quanteda)
pacman::p_load_current_gh('trinker/gofastr', 'trinker/textshape')

Tidying

The tidy_xxx functions convert untidy structures into tidy format. Tidy formatted text data structures are particularly useful for interfacing with ggplot2, which expects this form.

The tidy_list function is used in the style of do.call(rbind, list(x1, x2)) as a convenient way to bind together multiple named data.frames or vectorss into a single data.frame with the listnames acting as an id column. The data.frame bind is particularly useful for binding transcripts from different observations. Additionally, tidy_vector and tidy_table are provided for cbinding a table’s or named atomic vector’s values and names as separate columns in a data.frame. Lastly, tidy_dtm/tidy_tdm provide convenient ways to tidy a DocumentTermMatrix or TermDocumentMatrix.

A Vector

x <- list(p=1:500, r=letters)
tidy_list(x)

##      id content
##   1:  p       1
##   2:  p       2
##   3:  p       3
##   4:  p       4
##   5:  p       5
##  ---           
## 522:  r       v
## 523:  r       w
## 524:  r       x
## 525:  r       y
## 526:  r       z

A Dataframe

x <- list(p=mtcars, r=mtcars, z=mtcars, d=mtcars)
tidy_list(x) 

##      id  mpg cyl  disp  hp drat    wt  qsec vs am gear carb
##   1:  p 21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
##   2:  p 21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
##   3:  p 22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
##   4:  p 21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
##   5:  p 18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
##  ---                                                       
## 124:  d 30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
## 125:  d 15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
## 126:  d 19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
## 127:  d 15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
## 128:  d 21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2

A Named Vector

x <- setNames(
    sample(LETTERS[1:6], 1000, TRUE), 
    sample(state.name[1:5], 1000, TRUE)
)
tidy_vector(x)

##               id content
##    1:   Arkansas       D
##    2:     Alaska       B
##    3:    Arizona       E
##    4:    Arizona       C
##    5: California       A
##   ---                   
##  996:    Arizona       F
##  997:     Alaska       E
##  998:    Alabama       F
##  999:     Alaska       C
## 1000:    Arizona       E

A Table

x <- table(sample(LETTERS[1:6], 1000, TRUE))
tidy_table(x)

##    id content
## 1:  A     156
## 2:  B     174
## 3:  C     179
## 4:  D     149
## 5:  E     170
## 6:  F     172

A Matrix

mat <- matrix(1:16, nrow = 4,
    dimnames = list(LETTERS[1:4], LETTERS[23:26])
)

mat

##   W X  Y  Z
## A 1 5  9 13
## B 2 6 10 14
## C 3 7 11 15
## D 4 8 12 16

tidy_matrix(mat)

##     row col value
##  1:   A   W     1
##  2:   B   W     2
##  3:   C   W     3
##  4:   D   W     4
##  5:   A   X     5
##  6:   B   X     6
##  7:   C   X     7
##  8:   D   X     8
##  9:   A   Y     9
## 10:   B   Y    10
## 11:   C   Y    11
## 12:   D   Y    12
## 13:   A   Z    13
## 14:   B   Z    14
## 15:   C   Z    15
## 16:   D   Z    16

With clustering (column and row reordering) via the cluster_matrix function.

## plot heatmap w/o clustering
wo <- mtcars %>%
    cor() %>%
    tidy_matrix('car', 'var') %>%
    ggplot(aes(var, car, fill = value)) +
         geom_tile() +
         scale_fill_viridis(name = expression(r[xy])) +
         theme(
             axis.text.y = element_text(size = 8)   ,
             axis.text.x = element_text(size = 8, hjust = 1, vjust = 1, angle = 45),   
             legend.position = 'bottom',
             legend.key.height = grid::unit(.1, 'cm'),
             legend.key.width = grid::unit(.5, 'cm')
         ) +
         labs(subtitle = "With Out Clustering")

## plot heatmap w clustering
w <- mtcars %>%
    cor() %>%
    cluster_matrix() %>%
    tidy_matrix('car', 'var') %>%
    mutate(
        var = factor(var, levels = unique(var)),
        car = factor(car, levels = unique(car))        
    ) %>%
    group_by(var) %>%
    ggplot(aes(var, car, fill = value)) +
         geom_tile() +
         scale_fill_viridis(name = expression(r[xy])) +
         theme(
             axis.text.y = element_text(size = 8)   ,
             axis.text.x = element_text(size = 8, hjust = 1, vjust = 1, angle = 45),   
             legend.position = 'bottom',
             legend.key.height = grid::unit(.1, 'cm'),
             legend.key.width = grid::unit(.5, 'cm')               
         ) +
         labs(subtitle = "With Clustering")

grid.arrange(wo, w, ncol = 2)

A DocumentTermMatrix

The tidy_dtm and tidy_tdm functions convert a DocumentTermMatrix or TermDocumentMatrix into a tidied data set.

my_dtm <- with(presidential_debates_2012, q_dtm(dialogue, paste(time, tot, sep = "_")))

tidy_dtm(my_dtm) %>%
    tidyr::extract(doc, c("time", "turn", "sentence"), "(\\d)_(\\d+)\\.(\\d+)") %>%
    mutate(
        time = as.numeric(time),
        turn = as.numeric(turn),
        sentence = as.numeric(sentence)
    ) %>%
    tbl_df() %T>%
    print() %>%
    group_by(time, term) %>%
    summarize(n = sum(n)) %>%
    group_by(time) %>%
    arrange(desc(n)) %>%
    slice(1:10) %>%
    mutate(term = factor(paste(term, time, sep = "__"), levels = rev(paste(term, time, sep = "__")))) %>%
    ggplot(aes(x = n, y = term)) +
        geom_barh(stat='identity') +
        facet_wrap(~time, ncol=2, scales = 'free_y') +
        scale_y_discrete(labels = function(x) gsub("__.+$", "", x))

## # A tibble: 42,057 x 7
##     time  turn sentence term             n     i     j
##    <dbl> <dbl>    <dbl> <chr>        <dbl> <int> <int>
##  1     1     1        1 we'll            1     1     1
##  2     1     1        1 talk             1     1     2
##  3     1     1        1 about            2     1     3
##  4     1     1        1 specifically     1     1     4
##  5     1     1        1 health           1     1     5
##  6     1     1        1 care             1     1     6
##  7     1     1        1 in               1     1     7
##  8     1     1        1 a                1     1     8
##  9     1     1        1 moment           1     1     9
## 10     1     1        1 .                1     1    10
## # ... with 42,047 more rows

## `summarise()` regrouping output by 'time' (override with `.groups` argument)

A DocumentTermMatrix of Collocations

The tidy_colo_dtm and tidy_colo_tdm functions convert a DocumentTermMatrix or TermDocumentMatrix into a collocation matrix and then a tidied data set.

my_dtm <- with(presidential_debates_2012, q_dtm(dialogue, paste(time, tot, sep = "_")))

## Warning: NA is replaced by empty string

sw <- unique(c(
    lexicon::sw_jockers, 
    lexicon::sw_loughran_mcdonald_long, 
    lexicon::sw_fry_1000
))

tidy_colo_dtm(my_dtm) %>%
    tbl_df() %>%
    filter(!term_1 %in% c('i', sw) & !term_2 %in% sw) %>%
    filter(term_1 != term_2) %>%
    unique_pairs() %>%
    filter(n > 15) %>%
    complete(term_1, term_2, fill = list(n = 0)) %>%
    ggplot(aes(x = term_1, y = term_2, fill = n)) +
        geom_tile() +
        scale_fill_gradient(low= 'white', high = 'red') +
        theme(axis.text.x = element_text(angle = 45, hjust = 1))

Combining

The combine function acts like paste(x, collapse=" ") on vectors and lists of vectors. On dataframes multiple text cells are pasted together within grouping variables.

A Vector

x <- c("Computer", "is", "fun", ".", "Not", "too", "fun", ".")
combine(x)

## [1] "Computer is fun. Not too fun."

A Dataframe

(dat <- split_sentence(DATA))

##         person sex adult                       state code element_id
##  1:        sam   m     0            Computer is fun.   K1          1
##  2:        sam   m     0                Not too fun.   K1          1
##  3:       greg   m     0     No it's not, it's dumb.   K2          2
##  4:    teacher   m     1          What should we do?   K3          3
##  5:        sam   m     0        You liar, it stinks!   K4          4
##  6:       greg   m     0     I am telling the truth!   K5          5
##  7:      sally   f     0      How can we be certain?   K6          6
##  8:       greg   m     0            There is no way.   K7          7
##  9:        sam   m     0             I distrust you.   K8          8
## 10:      sally   f     0 What are you talking about?   K9          9
## 11: researcher   f     1           Shall we move on?  K10         10
## 12: researcher   f     1                  Good then.  K10         10
## 13:       greg   m     0                 I'm hungry.  K11         11
## 14:       greg   m     0                  Let's eat.  K11         11
## 15:       greg   m     0                You already?  K11         11
##     sentence_id
##  1:           1
##  2:           2
##  3:           1
##  4:           1
##  5:           1
##  6:           1
##  7:           1
##  8:           1
##  9:           1
## 10:           1
## 11:           1
## 12:           2
## 13:           1
## 14:           2
## 15:           3

combine(dat[, 1:5, with=FALSE])

##         person sex adult                               state code
##  1:        sam   m     0       Computer is fun. Not too fun.   K1
##  2:       greg   m     0             No it's not, it's dumb.   K2
##  3:    teacher   m     1                  What should we do?   K3
##  4:        sam   m     0                You liar, it stinks!   K4
##  5:       greg   m     0             I am telling the truth!   K5
##  6:      sally   f     0              How can we be certain?   K6
##  7:       greg   m     0                    There is no way.   K7
##  8:        sam   m     0                     I distrust you.   K8
##  9:      sally   f     0         What are you talking about?   K9
## 10: researcher   f     1        Shall we move on? Good then.  K10
## 11:       greg   m     0 I'm hungry. Let's eat. You already?  K11

Tabulating

mtabulate allows the user to transform data types into a dataframe of counts.

A Vector

(x <- list(w=letters[1:10], x=letters[1:5], z=letters))

## $w
##  [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j"
## 
## $x
## [1] "a" "b" "c" "d" "e"
## 
## $z
##  [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s"
## [20] "t" "u" "v" "w" "x" "y" "z"

mtabulate(x)

##   a b c d e f g h i j k l m n o p q r s t u v w x y z
## w 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## x 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## z 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

## Dummy coding
mtabulate(mtcars$cyl[1:10])

##    4 6 8
## 1  0 1 0
## 2  0 1 0
## 3  1 0 0
## 4  0 1 0
## 5  0 0 1
## 6  0 1 0
## 7  0 0 1
## 8  1 0 0
## 9  1 0 0
## 10 0 1 0

A Dataframe

(dat <- data.frame(matrix(sample(c("A", "B"), 30, TRUE), ncol=3)))

##    X1 X2 X3
## 1   A  A  B
## 2   B  A  A
## 3   B  A  B
## 4   B  A  A
## 5   A  A  B
## 6   A  A  B
## 7   B  B  B
## 8   A  B  B
## 9   A  B  A
## 10  A  B  B

mtabulate(dat)

##    A B
## X1 6 4
## X2 6 4
## X3 3 7

t(mtabulate(dat))

##   X1 X2 X3
## A  6  6  3
## B  4  4  7

Spanning

Often it is useful to know the duration (start-end) of turns of talk. The duration function calculates start-end durations as n words.

A Vector

(x <- c(
    "Mr. Brown comes! He says hello. i give him coffee.",
    "I'll go at 5 p. m. eastern time.  Or somewhere in between!",
    "go there"
))

## [1] "Mr. Brown comes! He says hello. i give him coffee."        
## [2] "I'll go at 5 p. m. eastern time.  Or somewhere in between!"
## [3] "go there"

duration(x)

##    all word.count start end
## 1: all         10     1  10
## 2: all         12    11  22
## 3: all          2    23  24
##                                                      text.var
## 1:         Mr. Brown comes! He says hello. i give him coffee.
## 2: I'll go at 5 p. m. eastern time.  Or somewhere in between!
## 3:                                                   go there

# With grouping variables
groups <- list(group1 = c("A", "B", "A"), group2 = c("red", "red", "green"))
duration(x, groups)

##    group1 group2 word.count start end
## 1:      A    red         10     1  10
## 2:      B    red         12    11  22
## 3:      A  green          2    23  24
##                                                      text.var
## 1:         Mr. Brown comes! He says hello. i give him coffee.
## 2: I'll go at 5 p. m. eastern time.  Or somewhere in between!
## 3:                                                   go there

A Dataframe

duration(DATA)

##         person sex adult code word.count start end
##  1:        sam   m     0   K1          6     1   6
##  2:       greg   m     0   K2          5     7  11
##  3:    teacher   m     1   K3          4    12  15
##  4:        sam   m     0   K4          4    16  19
##  5:       greg   m     0   K5          5    20  24
##  6:      sally   f     0   K6          5    25  29
##  7:       greg   m     0   K7          4    30  33
##  8:        sam   m     0   K8          3    34  36
##  9:      sally   f     0   K9          5    37  41
## 10: researcher   f     1  K10          6    42  47
## 11:       greg   m     0  K11          6    48  53
##                                     state
##  1:         Computer is fun. Not too fun.
##  2:               No it's not, it's dumb.
##  3:                    What should we do?
##  4:                  You liar, it stinks!
##  5:               I am telling the truth!
##  6:                How can we be certain?
##  7:                      There is no way.
##  8:                       I distrust you.
##  9:           What are you talking about?
## 10:         Shall we move on?  Good then.
## 11: I'm hungry.  Let's eat.  You already?

Gantt Plot

library(ggplot2)
ggplot(duration(DATA), aes(x = start, xend = end, y = person, yend = person, color = sex)) +
    geom_segment(size=4) +
    xlab("Duration (Words)") +
    ylab("Person")

Splitting

The following section provides examples of available splitting functions.

Indices

split_index allows the user to supply the integer indices of where to split a data type.

A Vector

split_index(
    LETTERS, 
    indices = c(4, 10, 16), 
    names = c("dog", "cat", "chicken", "rabbit")
)

## $dog
## [1] "A" "B" "C"
## 
## $cat
## [1] "D" "E" "F" "G" "H" "I"
## 
## $chicken
## [1] "J" "K" "L" "M" "N" "O"
## 
## $rabbit
##  [1] "P" "Q" "R" "S" "T" "U" "V" "W" "X" "Y" "Z"

A Dataframe

Here I calculate the indices of every time the vs variable in the mtcars data set changes and then split the dataframe on those indices. The change_index function is handy for extracting the indices of changes in runs within an atomic vector.

(vs_change <- change_index(mtcars[["vs"]]))

##  [1]  3  5  6  7  8 12 18 22 26 27 28 29 32

split_index(mtcars, indices = vs_change)

## [[1]]
##               mpg cyl disp  hp drat    wt  qsec vs am gear carb
## Mazda RX4      21   6  160 110  3.9 2.620 16.46  0  1    4    4
## Mazda RX4 Wag  21   6  160 110  3.9 2.875 17.02  0  1    4    4
## 
## [[2]]
##                 mpg cyl disp  hp drat    wt  qsec vs am gear carb
## Datsun 710     22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
## Hornet 4 Drive 21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
## 
## [[3]]
##                    mpg cyl disp  hp drat   wt  qsec vs am gear carb
## Hornet Sportabout 18.7   8  360 175 3.15 3.44 17.02  0  0    3    2
## 
## [[4]]
##          mpg cyl disp  hp drat   wt  qsec vs am gear carb
## Valiant 18.1   6  225 105 2.76 3.46 20.22  1  0    3    1
## 
## [[5]]
##             mpg cyl disp  hp drat   wt  qsec vs am gear carb
## Duster 360 14.3   8  360 245 3.21 3.57 15.84  0  0    3    4
## 
## [[6]]
##            mpg cyl  disp  hp drat   wt qsec vs am gear carb
## Merc 240D 24.4   4 146.7  62 3.69 3.19 20.0  1  0    4    2
## Merc 230  22.8   4 140.8  95 3.92 3.15 22.9  1  0    4    2
## Merc 280  19.2   6 167.6 123 3.92 3.44 18.3  1  0    4    4
## Merc 280C 17.8   6 167.6 123 3.92 3.44 18.9  1  0    4    4
## 
## [[7]]
##                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
## Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
## Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
## Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
## Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
## Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
## Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
## 
## [[8]]
##                 mpg cyl  disp hp drat    wt  qsec vs am gear carb
## Fiat 128       32.4   4  78.7 66 4.08 2.200 19.47  1  1    4    1
## Honda Civic    30.4   4  75.7 52 4.93 1.615 18.52  1  1    4    2
## Toyota Corolla 33.9   4  71.1 65 4.22 1.835 19.90  1  1    4    1
## Toyota Corona  21.5   4 120.1 97 3.70 2.465 20.01  1  0    3    1
## 
## [[9]]
##                   mpg cyl disp  hp drat    wt  qsec vs am gear carb
## Dodge Challenger 15.5   8  318 150 2.76 3.520 16.87  0  0    3    2
## AMC Javelin      15.2   8  304 150 3.15 3.435 17.30  0  0    3    2
## Camaro Z28       13.3   8  350 245 3.73 3.840 15.41  0  0    3    4
## Pontiac Firebird 19.2   8  400 175 3.08 3.845 17.05  0  0    3    2
## 
## [[10]]
##            mpg cyl disp hp drat    wt qsec vs am gear carb
## Fiat X1-9 27.3   4   79 66 4.08 1.935 18.9  1  1    4    1
## 
## [[11]]
##               mpg cyl  disp hp drat   wt qsec vs am gear carb
## Porsche 914-2  26   4 120.3 91 4.43 2.14 16.7  0  1    5    2
## 
## [[12]]
##               mpg cyl disp  hp drat    wt qsec vs am gear carb
## Lotus Europa 30.4   4 95.1 113 3.77 1.513 16.9  1  1    5    2
## 
## [[13]]
##                 mpg cyl disp  hp drat   wt qsec vs am gear carb
## Ford Pantera L 15.8   8  351 264 4.22 3.17 14.5  0  1    5    4
## Ferrari Dino   19.7   6  145 175 3.62 2.77 15.5  0  1    5    6
## Maserati Bora  15.0   8  301 335 3.54 3.57 14.6  0  1    5    8
## 
## [[14]]
##             mpg cyl disp  hp drat   wt qsec vs am gear carb
## Volvo 142E 21.4   4  121 109 4.11 2.78 18.6  1  1    4    2

Matches

split_match splits on elements that match exactly or via a regular expression match.

Exact Match

set.seed(15)
(x <- sample(c("", LETTERS[1:10]), 25, TRUE, prob=c(.2, rep(.08, 10))))

##  [1] "C" ""  "A" "C" "D" "A" "I" "B" "H" "I" ""  "C" "E" "H" "J" "J" "E" "A" "" 
## [20] "I" "I" "I" "G" ""  "F"

split_match(x)

## $`1`
## [1] "C"
## 
## $`2`
## [1] "A" "C" "D" "A" "I" "B" "H" "I"
## 
## $`3`
## [1] "C" "E" "H" "J" "J" "E" "A"
## 
## $`4`
## [1] "I" "I" "I" "G"
## 
## $`5`
## [1] "F"

split_match(x, split = "C")

## $`1`
## [1] ""  "A"
## 
## $`2`
## [1] "D" "A" "I" "B" "H" "I" "" 
## 
## $`3`
##  [1] "E" "H" "J" "J" "E" "A" ""  "I" "I" "I" "G" ""  "F"

split_match(x, split = c("", "C"))

## $`1`
## [1] "A"
## 
## $`2`
## [1] "D" "A" "I" "B" "H" "I"
## 
## $`3`
## [1] "E" "H" "J" "J" "E" "A"
## 
## $`4`
## [1] "I" "I" "I" "G"
## 
## $`5`
## [1] "F"

## Don't include
split_match(x, include = 0)

## $`1`
## [1] "C"
## 
## $`2`
## [1] "A" "C" "D" "A" "I" "B" "H" "I"
## 
## $`3`
## [1] "C" "E" "H" "J" "J" "E" "A"
## 
## $`4`
## [1] "I" "I" "I" "G"
## 
## $`5`
## [1] "F"

## Include at beginning
split_match(x, include = 1)

## $`1`
## [1] "C"
## 
## $`2`
## [1] ""  "A" "C" "D" "A" "I" "B" "H" "I"
## 
## $`3`
## [1] ""  "C" "E" "H" "J" "J" "E" "A"
## 
## $`4`
## [1] ""  "I" "I" "I" "G"
## 
## $`5`
## [1] ""  "F"

## Include at end
split_match(x, include = 2)

## [[1]]
## [1] "C" "" 
## 
## [[2]]
## [1] "A" "C" "D" "A" "I" "B" "H" "I" "" 
## 
## [[3]]
## [1] "C" "E" "H" "J" "J" "E" "A" "" 
## 
## [[4]]
## [1] "I" "I" "I" "G" "" 
## 
## [[5]]
## [1] "F"

Regex Match

Here I use the regex "^I" to break on any vectors containing the capital letter I as the first character.

split_match(DATA[["state"]], split = "^I", regex=TRUE, include = 1)

## $`1`
## [1] "Computer is fun. Not too fun." "No it's not, it's dumb."      
## [3] "What should we do?"            "You liar, it stinks!"         
## 
## $`2`
## [1] "I am telling the truth!" "How can we be certain?" 
## [3] "There is no way."       
## 
## $`3`
## [1] "I distrust you."               "What are you talking about?"  
## [3] "Shall we move on?  Good then."
## 
## $`4`
## [1] "I'm hungry.  Let's eat.  You already?"

Portions

At times it is useful to split texts into portioned chunks, operate on the chunks and aggregate the results. split_portion allows the user to do this sort of text shaping. We can split into n chunks per grouping variable (via n.chunks) or into chunks of n length (via n.words).

A Vector

with(DATA, split_portion(state, n.chunks = 10))

##     all index                     text.var
##  1: all     1     Computer is fun. Not too
##  2: all     2       fun. No it's not, it's
##  3: all     3     dumb. What should we do?
##  4: all     4       You liar, it stinks! I
##  5: all     5    am telling the truth! How
##  6: all     6     can we be certain? There
##  7: all     7        is no way. I distrust
##  8: all     8    you. What are you talking
##  9: all     9     about? Shall we move on?
## 10: all    10 Good then. I'm hungry. Let's
## 11: all    11            eat. You already?

with(DATA, split_portion(state, n.words = 10))

##    all index                                              text.var
## 1: all     1       Computer is fun. Not too fun. No it's not, it's
## 2: all     2       dumb. What should we do? You liar, it stinks! I
## 3: all     3    am telling the truth! How can we be certain? There
## 4: all     4       is no way. I distrust you. What are you talking
## 5: all     5 about? Shall we move on? Good then. I'm hungry. Let's
## 6: all     6                                     eat. You already?

A Dataframe

with(DATA, split_portion(state, list(sex, adult), n.words = 10))

##    sex adult index                                           text.var
## 1:   f     0     1 How can we be certain? What are you talking about?
## 2:   f     1     1                       Shall we move on? Good then.
## 3:   m     0     1    Computer is fun. Not too fun. No it's not, it's
## 4:   m     0     2 dumb. You liar, it stinks! I am telling the truth!
## 5:   m     0     3 There is no way. I distrust you. I'm hungry. Let's
## 6:   m     0     4                                  eat. You already?
## 7:   m     1     1                                 What should we do?

Runs

split_run allows the user to split up runs of identical characters.

x1 <- c(
     "122333444455555666666",
     NA,
     "abbcccddddeeeeeffffff",
     "sddfg",
     "11112222333"
)

x <- c(rep(x1, 2), ">>???,,,,....::::;[[")

split_run(x)

## [[1]]
## [1] "1"      "22"     "333"    "4444"   "55555"  "666666"
## 
## [[2]]
## [1] NA
## 
## [[3]]
## [1] "a"      "bb"     "ccc"    "dddd"   "eeeee"  "ffffff"
## 
## [[4]]
## [1] "s"  "dd" "f"  "g" 
## 
## [[5]]
## [1] "1111" "2222" "333" 
## 
## [[6]]
## [1] "1"      "22"     "333"    "4444"   "55555"  "666666"
## 
## [[7]]
## [1] NA
## 
## [[8]]
## [1] "a"      "bb"     "ccc"    "dddd"   "eeeee"  "ffffff"
## 
## [[9]]
## [1] "s"  "dd" "f"  "g" 
## 
## [[10]]
## [1] "1111" "2222" "333" 
## 
## [[11]]
## [1] ">>"   "???"  ",,,," "...." "::::" ";"    "[["

Dataframe

DATA[["run.col"]] <- x
split_run(DATA)

##      person sex adult state code               run.col element_id sentence_id
##   1:    sam   m     0     C   K1 122333444455555666666          1           1
##   2:    sam   m     0     o   K1 122333444455555666666          1           2
##   3:    sam   m     0     m   K1 122333444455555666666          1           3
##   4:    sam   m     0     p   K1 122333444455555666666          1           4
##   5:    sam   m     0     u   K1 122333444455555666666          1           5
##  ---                                                                         
## 206:   greg   m     0     e  K11  >>???,,,,....::::;[[         11          26
## 207:   greg   m     0     a  K11  >>???,,,,....::::;[[         11          27
## 208:   greg   m     0     d  K11  >>???,,,,....::::;[[         11          28
## 209:   greg   m     0     y  K11  >>???,,,,....::::;[[         11          29
## 210:   greg   m     0     ?  K11  >>???,,,,....::::;[[         11          30

## Reset the DATA dataset
DATA <- textshape::DATA

Sentences

split_sentece provides a mapping + regex approach to splitting sentences. It is less accurate than the Stanford parser but more accurate than a simple regular expression approach alone.

A Vector

(x <- paste0(
    "Mr. Brown comes! He says hello. i give him coffee.  i will ",
    "go at 5 p. m. eastern time.  Or somewhere in between!go there"
))

## [1] "Mr. Brown comes! He says hello. i give him coffee.  i will go at 5 p. m. eastern time.  Or somewhere in between!go there"

split_sentence(x)

## [[1]]
## [1] "Mr. Brown comes!"                  "He says hello."                   
## [3] "i give him coffee."                "i will go at 5 p.m. eastern time."
## [5] "Or somewhere in between!"          "go there"

A Dataframe

split_sentence(DATA)

##         person sex adult                       state code element_id
##  1:        sam   m     0            Computer is fun.   K1          1
##  2:        sam   m     0                Not too fun.   K1          1
##  3:       greg   m     0     No it's not, it's dumb.   K2          2
##  4:    teacher   m     1          What should we do?   K3          3
##  5:        sam   m     0        You liar, it stinks!   K4          4
##  6:       greg   m     0     I am telling the truth!   K5          5
##  7:      sally   f     0      How can we be certain?   K6          6
##  8:       greg   m     0            There is no way.   K7          7
##  9:        sam   m     0             I distrust you.   K8          8
## 10:      sally   f     0 What are you talking about?   K9          9
## 11: researcher   f     1           Shall we move on?  K10         10
## 12: researcher   f     1                  Good then.  K10         10
## 13:       greg   m     0                 I'm hungry.  K11         11
## 14:       greg   m     0                  Let's eat.  K11         11
## 15:       greg   m     0                You already?  K11         11
##     sentence_id
##  1:           1
##  2:           2
##  3:           1
##  4:           1
##  5:           1
##  6:           1
##  7:           1
##  8:           1
##  9:           1
## 10:           1
## 11:           1
## 12:           2
## 13:           1
## 14:           2
## 15:           3

Speakers

Often speakers may talk in unison. This is often displayed in a single cell as a comma separated string of speakers. Some analysis may require this information to be parsed out and replicated as one turn per speaker. The split_speaker function accomplishes this.

DATA$person <- as.character(DATA$person)
DATA$person[c(1, 4, 6)] <- c("greg, sally, & sam",
    "greg, sally", "sam and sally")
DATA

##                person sex adult                                 state code
## 1  greg, sally, & sam   m     0         Computer is fun. Not too fun.   K1
## 2                greg   m     0               No it's not, it's dumb.   K2
## 3             teacher   m     1                    What should we do?   K3
## 4         greg, sally   m     0                  You liar, it stinks!   K4
## 5                greg   m     0               I am telling the truth!   K5
## 6       sam and sally   f     0                How can we be certain?   K6
## 7                greg   m     0                      There is no way.   K7
## 8                 sam   m     0                       I distrust you.   K8
## 9               sally   f     0           What are you talking about?   K9
## 10         researcher   f     1         Shall we move on?  Good then.  K10
## 11               greg   m     0 I'm hungry.  Let's eat.  You already?  K11

split_speaker(DATA)

##         person sex adult                                 state code element_id
##  1:       greg   m     0         Computer is fun. Not too fun.   K1          1
##  2:      sally   m     0         Computer is fun. Not too fun.   K1          1
##  3:        sam   m     0         Computer is fun. Not too fun.   K1          1
##  4:       greg   m     0               No it's not, it's dumb.   K2          2
##  5:    teacher   m     1                    What should we do?   K3          3
##  6:       greg   m     0                  You liar, it stinks!   K4          4
##  7:      sally   m     0                  You liar, it stinks!   K4          4
##  8:       greg   m     0               I am telling the truth!   K5          5
##  9:        sam   f     0                How can we be certain?   K6          6
## 10:      sally   f     0                How can we be certain?   K6          6
## 11:       greg   m     0                      There is no way.   K7          7
## 12:        sam   m     0                       I distrust you.   K8          8
## 13:      sally   f     0           What are you talking about?   K9          9
## 14: researcher   f     1         Shall we move on?  Good then.  K10         10
## 15:       greg   m     0 I'm hungry.  Let's eat.  You already?  K11         11
##     split_id
##  1:        1
##  2:        2
##  3:        3
##  4:        1
##  5:        1
##  6:        1
##  7:        2
##  8:        1
##  9:        1
## 10:        2
## 11:        1
## 12:        1
## 13:        1
## 14:        1
## 15:        1

## Reset the DATA dataset
DATA <- textshape::DATA

Tokens

The split_token function split data into words and punctuation.

A Vector

(x <- c(
    "Mr. Brown comes! He says hello. i give him coffee.",
    "I'll go at 5 p. m. eastern time.  Or somewhere in between!",
    "go there"
))

## [1] "Mr. Brown comes! He says hello. i give him coffee."        
## [2] "I'll go at 5 p. m. eastern time.  Or somewhere in between!"
## [3] "go there"

split_token(x)

## [[1]]
##  [1] "mr"     "."      "brown"  "comes"  "!"      "he"     "says"   "hello" 
##  [9] "."      "i"      "give"   "him"    "coffee" "."     
## 
## [[2]]
##  [1] "i'll"      "go"        "at"        "5"         "p"         "."        
##  [7] "m"         "."         "eastern"   "time"      "."         "or"       
## [13] "somewhere" "in"        "between"   "!"        
## 
## [[3]]
## [1] "go"    "there"

A Dataframe

 split_token(DATA)

##         person sex adult    state code element_id token_id
##  1:        sam   m     0 computer   K1          1        1
##  2:        sam   m     0       is   K1          1        2
##  3:        sam   m     0      fun   K1          1        3
##  4:        sam   m     0        .   K1          1        4
##  5:        sam   m     0      not   K1          1        5
##  6:        sam   m     0      too   K1          1        6
##  7:        sam   m     0      fun   K1          1        7
##  8:        sam   m     0        .   K1          1        8
##  9:       greg   m     0       no   K2          2        1
## 10:       greg   m     0     it's   K2          2        2
## 11:       greg   m     0      not   K2          2        3
## 12:       greg   m     0        ,   K2          2        4
## 13:       greg   m     0     it's   K2          2        5
## 14:       greg   m     0     dumb   K2          2        6
## 15:       greg   m     0        .   K2          2        7
## 16:    teacher   m     1     what   K3          3        1
## 17:    teacher   m     1   should   K3          3        2
## 18:    teacher   m     1       we   K3          3        3
## 19:    teacher   m     1       do   K3          3        4
## 20:    teacher   m     1        ?   K3          3        5
## 21:        sam   m     0      you   K4          4        1
## 22:        sam   m     0     liar   K4          4        2
## 23:        sam   m     0        ,   K4          4        3
## 24:        sam   m     0       it   K4          4        4
## 25:        sam   m     0   stinks   K4          4        5
## 26:        sam   m     0        !   K4          4        6
## 27:       greg   m     0        i   K5          5        1
## 28:       greg   m     0       am   K5          5        2
## 29:       greg   m     0  telling   K5          5        3
## 30:       greg   m     0      the   K5          5        4
## 31:       greg   m     0    truth   K5          5        5
## 32:       greg   m     0        !   K5          5        6
## 33:      sally   f     0      how   K6          6        1
## 34:      sally   f     0      can   K6          6        2
## 35:      sally   f     0       we   K6          6        3
## 36:      sally   f     0       be   K6          6        4
## 37:      sally   f     0  certain   K6          6        5
## 38:      sally   f     0        ?   K6          6        6
## 39:       greg   m     0    there   K7          7        1
## 40:       greg   m     0       is   K7          7        2
## 41:       greg   m     0       no   K7          7        3
## 42:       greg   m     0      way   K7          7        4
## 43:       greg   m     0        .   K7          7        5
## 44:        sam   m     0        i   K8          8        1
## 45:        sam   m     0 distrust   K8          8        2
## 46:        sam   m     0      you   K8          8        3
## 47:        sam   m     0        .   K8          8        4
## 48:      sally   f     0     what   K9          9        1
## 49:      sally   f     0      are   K9          9        2
## 50:      sally   f     0      you   K9          9        3
## 51:      sally   f     0  talking   K9          9        4
## 52:      sally   f     0    about   K9          9        5
## 53:      sally   f     0        ?   K9          9        6
## 54: researcher   f     1    shall  K10         10        1
## 55: researcher   f     1       we  K10         10        2
## 56: researcher   f     1     move  K10         10        3
## 57: researcher   f     1       on  K10         10        4
## 58: researcher   f     1        ?  K10         10        5
## 59: researcher   f     1     good  K10         10        6
## 60: researcher   f     1     then  K10         10        7
## 61: researcher   f     1        .  K10         10        8
## 62:       greg   m     0      i'm  K11         11        1
## 63:       greg   m     0   hungry  K11         11        2
## 64:       greg   m     0        .  K11         11        3
## 65:       greg   m     0    let's  K11         11        4
## 66:       greg   m     0      eat  K11         11        5
## 67:       greg   m     0        .  K11         11        6
## 68:       greg   m     0      you  K11         11        7
## 69:       greg   m     0  already  K11         11        8
## 70:       greg   m     0        ?  K11         11        9
##         person sex adult    state code element_id token_id

Transcript

The split_transcript function splits vectors with speaker prefixes (e.g., c("greg: Who me", "sarah: yes you!")) into a two column data.frame.

A Vector

(x <- c(
    "greg: Who me", 
    "sarah: yes you!",
    "greg: well why didn't you say so?",
    "sarah: I did but you weren't listening.",
    "greg: oh :-/ I see...",
    "dan: Ok let's meet at 4:30 pm for drinks"
))

## [1] "greg: Who me"                            
## [2] "sarah: yes you!"                         
## [3] "greg: well why didn't you say so?"       
## [4] "sarah: I did but you weren't listening." 
## [5] "greg: oh :-/ I see..."                   
## [6] "dan: Ok let's meet at 4:30 pm for drinks"

split_transcript(x)

##    person                            dialogue
## 1:   greg                              Who me
## 2:  sarah                            yes you!
## 3:   greg         well why didn't you say so?
## 4:  sarah    I did but you weren't listening.
## 5:   greg                     oh :-/ I see...
## 6:    dan Ok let's meet at 4:30 pm for drinks

Words

The split_word function splits data into words.

A Vector

(x <- c(
    "Mr. Brown comes! He says hello. i give him coffee.",
    "I'll go at 5 p. m. eastern time.  Or somewhere in between!",
    "go there"
))

## [1] "Mr. Brown comes! He says hello. i give him coffee."        
## [2] "I'll go at 5 p. m. eastern time.  Or somewhere in between!"
## [3] "go there"

split_word(x)

## [[1]]
##  [1] "mr"     "brown"  "comes"  "he"     "says"   "hello"  "i"      "give"  
##  [9] "him"    "coffee"
## 
## [[2]]
##  [1] "i'll"      "go"        "at"        "5"         "p"         "m"        
##  [7] "eastern"   "time"      "or"        "somewhere" "in"        "between"  
## 
## [[3]]
## [1] "go"    "there"

A Dataframe

 split_word(DATA)

##         person sex adult    state code element_id word_id
##  1:        sam   m     0 computer   K1          1       1
##  2:        sam   m     0       is   K1          1       2
##  3:        sam   m     0      fun   K1          1       3
##  4:        sam   m     0      not   K1          1       4
##  5:        sam   m     0      too   K1          1       5
##  6:        sam   m     0      fun   K1          1       6
##  7:       greg   m     0       no   K2          2       1
##  8:       greg   m     0     it's   K2          2       2
##  9:       greg   m     0      not   K2          2       3
## 10:       greg   m     0     it's   K2          2       4
## 11:       greg   m     0     dumb   K2          2       5
## 12:    teacher   m     1     what   K3          3       1
## 13:    teacher   m     1   should   K3          3       2
## 14:    teacher   m     1       we   K3          3       3
## 15:    teacher   m     1       do   K3          3       4
## 16:        sam   m     0      you   K4          4       1
## 17:        sam   m     0     liar   K4          4       2
## 18:        sam   m     0       it   K4          4       3
## 19:        sam   m     0   stinks   K4          4       4
## 20:       greg   m     0        i   K5          5       1
## 21:       greg   m     0       am   K5          5       2
## 22:       greg   m     0  telling   K5          5       3
## 23:       greg   m     0      the   K5          5       4
## 24:       greg   m     0    truth   K5          5       5
## 25:      sally   f     0      how   K6          6       1
## 26:      sally   f     0      can   K6          6       2
## 27:      sally   f     0       we   K6          6       3
## 28:      sally   f     0       be   K6          6       4
## 29:      sally   f     0  certain   K6          6       5
## 30:       greg   m     0    there   K7          7       1
## 31:       greg   m     0       is   K7          7       2
## 32:       greg   m     0       no   K7          7       3
## 33:       greg   m     0      way   K7          7       4
## 34:        sam   m     0        i   K8          8       1
## 35:        sam   m     0 distrust   K8          8       2
## 36:        sam   m     0      you   K8          8       3
## 37:      sally   f     0     what   K9          9       1
## 38:      sally   f     0      are   K9          9       2
## 39:      sally   f     0      you   K9          9       3
## 40:      sally   f     0  talking   K9          9       4
## 41:      sally   f     0    about   K9          9       5
## 42: researcher   f     1    shall  K10         10       1
## 43: researcher   f     1       we  K10         10       2
## 44: researcher   f     1     move  K10         10       3
## 45: researcher   f     1       on  K10         10       4
## 46: researcher   f     1     good  K10         10       5
## 47: researcher   f     1     then  K10         10       6
## 48:       greg   m     0      i'm  K11         11       1
## 49:       greg   m     0   hungry  K11         11       2
## 50:       greg   m     0    let's  K11         11       3
## 51:       greg   m     0      eat  K11         11       4
## 52:       greg   m     0      you  K11         11       5
## 53:       greg   m     0  already  K11         11       6
##         person sex adult    state code element_id word_id

Grabbing

The following section provides examples of available grabbing (from a starting point up to an ending point) functions.

Indices

grab_index allows the user to supply the integer indices of where to grab (from - up to) a data type.

A Vector

grab_index(DATA$state, from = 2, to = 4)

## [1] "No it's not, it's dumb." "What should we do?"     
## [3] "You liar, it stinks!"

grab_index(DATA$state, from = 9)

## [1] "What are you talking about?"          
## [2] "Shall we move on?  Good then."        
## [3] "I'm hungry.  Let's eat.  You already?"

grab_index(DATA$state, to = 3)

## [1] "Computer is fun. Not too fun." "No it's not, it's dumb."      
## [3] "What should we do?"

A Dataframe

grab_index(DATA, from = 2, to = 4)

##    person sex adult                   state code
## 2    greg   m     0 No it's not, it's dumb.   K2
## 3 teacher   m     1      What should we do?   K3
## 4     sam   m     0    You liar, it stinks!   K4

A List

grab_index(as.list(DATA$state), from = 2, to = 4)

## [[1]]
## [1] "No it's not, it's dumb."
## 
## [[2]]
## [1] "What should we do?"
## 
## [[3]]
## [1] "You liar, it stinks!"

Matches

grab_match grabs (from - up to) elements that match a regular expression.

A Vector

grab_match(DATA$state, from = 'dumb', to = 'liar')

## [1] "No it's not, it's dumb." "What should we do?"     
## [3] "You liar, it stinks!"

grab_match(DATA$state, from = '^What are')

## [1] "What are you talking about?"          
## [2] "Shall we move on?  Good then."        
## [3] "I'm hungry.  Let's eat.  You already?"

grab_match(DATA$state, to = 'we do[?]')

## [1] "Computer is fun. Not too fun." "No it's not, it's dumb."      
## [3] "What should we do?"

grab_match(DATA$state, from = 'no', to = 'the', ignore.case = TRUE, 
    from.n = 'last', to.n = 'first')

## [1] "There is no way."        "How can we be certain?" 
## [3] "I am telling the truth!"

A Dataframe

grab_match(DATA, from = 'dumb', to = 'liar')

##    person sex adult                   state code
## 2    greg   m     0 No it's not, it's dumb.   K2
## 3 teacher   m     1      What should we do?   K3
## 4     sam   m     0    You liar, it stinks!   K4

A List

grab_match(as.list(DATA$state), from = 'dumb', to = 'liar')

## [[1]]
## [1] "No it's not, it's dumb."
## 
## [[2]]
## [1] "What should we do?"
## 
## [[3]]
## [1] "You liar, it stinks!"

Putting It Together

Eduardo Flores blogged about What the candidates say, analyzing republican debates using R where he demonstrated some scraping and analysis techniques. Here I highlight a combination usage of textshape tools to scrape and structure the text from 4 of the 2015 Republican debates within a magrittr pipeline. The result is a single data.table containing the dialogue from all 4 debates. The code highlights the conciseness and readability of textshape by restructuring Flores scraping with textshape replacements.

if (!require("pacman")) install.packages("pacman")

## Loading required package: pacman

pacman::p_load(rvest, magrittr, xml2)

debates <- c(
    wisconsin = "110908",
    boulder = "110906",
    california = "110756",
    ohio = "110489"
)

lapply(debates, function(x){
    xml2::read_html(paste0("http://www.presidency.ucsb.edu/ws/index.php?pid=", x)) %>%
        rvest::html_nodes("p") %>%
        rvest::html_text() %>%
        textshape::split_index(., grep("^[A-Z]+:", .)) %>%
        #textshape::split_match("^[A-Z]+:", TRUE, TRUE) %>% #equal to line above
        textshape::combine() %>%
        textshape::split_transcript() %>%
        textshape::split_sentence()
}) %>%
    textshape::tidy_list("location")

##        location       person
##    1: wisconsin About Search
##    2: wisconsin PARTICIPANTS
##    3: wisconsin   MODERATORS
##    4: wisconsin       CAVUTO
##    5: wisconsin       CAVUTO
##   ---                       
## 7527:      ohio        KELLY
## 7528:      ohio        KELLY
## 7529:      ohio         NOTE
## 7530:      ohio         NOTE
## 7531:      ohio         NOTE
##                                                                                                                                                                                                                                                                                                                                                                                     dialogue
##    1:                                                                                                                                                                                                                                                                                                                                                                           About Search
##    2:                                                                                                                                                                                                               Former Governor Jeb Bush (FL);Ben Carson;Senator Ted Cruz (TX);Carly Fiorina;Governor John Kasich (OH);Senator Rand Paul (KY);Senator Marco Rubio (FL); andDonald Trump;
##    3:                                                                                                                                                                                                                                                                   Gerard Baker (The Wall Street Journal);Maria Bartiromo (Fox Business Network); andNeil Cavuto (Fox Business Network)
##    4:                                                                                                                                                                                                                                                                                                        It is 9:00 p.m. on the East Coast, 8:00 p.m. here inside the Milwaukee theater.
##    5:                                                                                                                                                                                                                                                                                                        Welcome to the Republican presidential debate here on the Fox Business Network.
##   ---                                                                                                                                                                                                                                                                                                                                                                                       
## 7527:                                                                                                                                                                                                                                                              Thank you all very much, and that will do it for the first Republican primary debate night of the 2016 presidential race.
## 7528:                                                                                                                                                                                                                                                                                                       Our thanks to the candidates, who will now be joined by their families on stage.
## 7529:                                                                                                                                                                                                                                                                              A candidate must rank in the top ten candidates in Fox News polls in order to appear in this main debate.
## 7530:                                                                                                                                                                                                                                                                                                             The remaining candidates were invited to appear in the "undercard" debate.
## 7531: Presidential Candidate Debates, Republican Candidates Debate in Cleveland, Ohio Online by Gerhard Peters and John T. Woolley, The American Presidency Project https://www.presidency.ucsb.edu/node/310229 The American Presidency ProjectJohn Woolley and Gerhard PetersContact Twitter Facebook Copyright © The American Presidency ProjectTerms of Service | Privacy | Accessibility
##       element_id sentence_id
##    1:          1           1
##    2:          2           1
##    3:          3           1
##    4:          4           1
##    5:          4           2
##   ---                       
## 7527:        305           4
## 7528:        305           5
## 7529:        306           1
## 7530:        306           2
## 7531:        306           3
Metadata

Version

1.7.5

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows