MyNixOS website logo
Description

Write Events for 'TensorBoard'.

Provides a convenient way to log scalars, images, audio, and histograms in the 'tfevent' record file format. Logged data can be visualized on the fly using 'TensorBoard', a web based tool that focuses on visualizing the training progress of machine learning models.

tfevents

R-CMD-check Codecov testcoverage CRANstatus

tfevents allows logging data from machine learning experiments to a file format that can be later consumed by TensorBoard in order to generate visualizations.

Installation

You can install tfevents from CRAN with:

install.packages("tfevents")

You can install the development version of tfevents from GitHub with:

You need to have cmake on your path. See installation instructions in the cmake install webpage - or:

If you use brew on MacOS you can run:

brew install cmake

Or on linux install the cmake library, for example on Debian systems:

sudo apt install cmake
# install.packages("devtools")
devtools::install_github("mlverse/tfevents")

Example

The main entrypoint in tfevents API is the log_event function. It can be used to log summaries like scalars, images, audio (Coming soon), histograms (Coming soon) and arbitrary tensors (soon) to a log directory, which we like to call logdir. You can later point TensorBoard to this logdir to visualize the results.

library(tfevents)

Summaries are always associated to a step in the TensorBoard API, and log_event automatically increases the step everytime it’s called, unless you provide the step argument.

Let’s start by logging some metrics:

epochs <- 10
for (i in seq_len(epochs)) {
  # training code would go here
  log_event(
    train = list(loss = runif(1), acc = runif(1)),
    valid = list(loss = runif(1), acc = runif(1))
  )
}

By default this will create a logs directory in your working directory and write metrics to it - you can change the default logdir using context like with_logdir or globally with set_default_logdir().

Since we passed a nested list of metrics, log_event will create subdirectories under logs to write metrics for each group.

fs::dir_tree("logs")
#> logs
#> ├── train
#> │   └── events.out.tfevents.1719410709.v2
#> └── valid
#>     └── events.out.tfevents.1719410709.v2

You can later point TensorBoard to that logdir using TensorBoard’s command line interface or tensorflow’s utility function tensorboard()

tensorflow::tensorboard(normalizePath("logs"), port = 6060)
#> Started TensorBoard at http://127.0.0.1:6060

TensorBoard will display the results in a dashbboard, similar to one you can see in the screenshot below:

You can learn more in the tfevents website.

Metadata

Version

0.0.4

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows