A Tidy Implementation of Heatmap.
tidyHeatmap
Citation
Mangiola et al., (2020). tidyHeatmap: an R package for modular heatmap production based on tidy principles. Journal of Open Source Software, 5(52), 2472, https://doi.org/10.21105/joss.02472
Please have a look also to
- tidygate for adding custom gate information to your tibble
- tidySingleCellExperiment for tidy manipulation of Seurat objects
- tidyseurat for tidy manipulation of Seurat objects
- tidybulk for tidy high-level data analysis and manipulation
- tidySummarizedExperiment for heatmaps produced with tidy principles
website: stemangiola.github.io/tidyHeatmap
tidyHeatmap
is a package that introduces tidy principles to the creation of information-rich heatmaps. This package uses ComplexHeatmap as graphical engine.
Advantages:
- Modular annotation with just specifying column names
- Custom grouping of rows is easy to specify providing a grouped tbl. For example
df |> group_by(...)
- Labels size adjusted by row and column total number
- Default use of Brewer and Viridis palettes
Functions/utilities available
Function | Description |
---|---|
heatmap | Plots base heatmap |
add_tile | Adds tile annotation to the heatmap |
add_point | Adds point annotation to the heatmap |
add_bar | Adds bar annotation to the heatmap |
add_line | Adds line annotation to the heatmap |
layer_point | Adds layer of symbols on top of the heatmap |
layer_square | Adds layer of symbols on top of the heatmap |
layer_diamond | Adds layer of symbols on top of the heatmap |
layer_arrow_up | Adds layer of symbols on top of the heatmap |
layer_arrow_down | Add layer of symbols on top of the heatmap |
split_rows | Splits the rows based on the dendogram |
split_columns | Splits the columns based on the dendogram |
save_pdf | Saves the PDF of the heatmap |
Installation
To install the most up-to-date version
devtools::install_github("stemangiola/tidyHeatmap")
To install the most stable version (however please keep in mind that this package is under a maturing lifecycle stage)
install.packages("tidyHeatmap")
Contribution
If you want to contribute to the software, report issues or problems with the software or seek support please open an issue here
Input data frame
The heatmaps visualise a multi-element, multi-feature dataset, annotated with independent variables. Each observation is a element-feature pair (e.g., person-physical characteristics).
element | feature | value | independent_variables |
---|---|---|---|
chr or fctr | chr or fctr | numeric | … |
Let’s transform the mtcars dataset into a tidy “element-feature-independent variables” data frame. Where the independent variables in this case are ‘hp’ and ‘vs’.
mtcars_tidy <-
mtcars |>
as_tibble(rownames="Car name") |>
# Scale
mutate_at(vars(-`Car name`, -hp, -vs), scale) |>
# tidyfy
pivot_longer(cols = -c(`Car name`, hp, vs), names_to = "Property", values_to = "Value")
mtcars_tidy
## # A tibble: 288 × 5
## `Car name` hp vs Property Value[,1]
## <chr> <dbl> <dbl> <chr> <dbl>
## 1 Mazda RX4 110 0 mpg 0.151
## 2 Mazda RX4 110 0 cyl -0.105
## 3 Mazda RX4 110 0 disp -0.571
## 4 Mazda RX4 110 0 drat 0.568
## 5 Mazda RX4 110 0 wt -0.610
## 6 Mazda RX4 110 0 qsec -0.777
## 7 Mazda RX4 110 0 am 1.19
## 8 Mazda RX4 110 0 gear 0.424
## 9 Mazda RX4 110 0 carb 0.735
## 10 Mazda RX4 Wag 110 0 mpg 0.151
## # … with 278 more rows
Plotting
For plotting, you simply pipe the input data frame into heatmap, specifying:
- The rows, cols relative column names (mandatory)
- The value column name (mandatory)
- The annotations column name(s)
mtcars
mtcars_heatmap <-
mtcars_tidy |>
heatmap(`Car name`, Property, Value, scale = "row" ) |>
add_tile(hp)
mtcars_heatmap
Saving
mtcars_heatmap |> save_pdf("mtcars_heatmap.pdf")
Grouping and splitting
We can easily group the data (one group per dimension maximum, at the moment only the vertical dimension is supported) with dplyr, and the heatmap will be grouped accordingly
# Make up more groupings
mtcars_tidy_groupings =
mtcars_tidy |>
mutate(property_group = if_else(Property %in% c("cyl", "disp"), "Engine", "Other"))
mtcars_tidy_groupings |>
group_by(vs, property_group) |>
heatmap(`Car name`, Property, Value, scale = "row" ) |>
add_tile(hp)
We can provide colour palettes to groupings
mtcars_tidy_groupings |>
group_by(vs, property_group) |>
heatmap(
`Car name`, Property, Value ,
scale = "row",
palette_grouping = list(
# For first grouping (vs)
c("#66C2A5", "#FC8D62"),
# For second grouping (property_group)
c("#b58b4c", "#74a6aa")
)
) |>
add_tile(hp)
We can split based on the cladogram
mtcars_tidy |>
heatmap(`Car name`, Property, Value, scale = "row" ) |>
split_rows(2) |>
split_columns(2)
We can split on kmean clustering (using ComplexHeatmap options, it is stochastic)
mtcars_tidy |>
heatmap(
`Car name`, Property, Value,
scale = "row",
row_km = 2,
column_km = 2
)
Custom palettes
We can easily use custom palette, using strings, hexadecimal color character vector,
mtcars_tidy |>
heatmap(
`Car name`,
Property,
Value,
scale = "row",
palette_value = c("red", "white", "blue")
)
A better-looking blue-to-red palette
mtcars_tidy |>
heatmap(
`Car name`,
Property,
Value,
scale = "row",
palette_value = circlize::colorRamp2(
seq(-2, 2, length.out = 11),
RColorBrewer::brewer.pal(11, "RdBu")
)
)
Or a grid::colorRamp2 function for higher flexibility
mtcars_tidy |>
heatmap(
`Car name`,
Property,
Value,
scale = "row",
palette_value = circlize::colorRamp2(c(-2, -1, 0, 1, 2), viridis::magma(5))
)
We can use grid::colorRamp2 function for tile annotation too
mtcars_tidy |>
heatmap(
`Car name`,
Property,
Value,
scale = "row"
) |>
add_tile(
hp,
palette = circlize::colorRamp2(c(0, 100, 200, 300), viridis::magma(4))
)
Multiple groupings and annotations
tidyHeatmap::pasilla |>
group_by(location, type) |>
heatmap(
.column = sample,
.row = symbol,
.value = `count normalised adjusted`,
scale = "row"
) |>
add_tile(condition) |>
add_tile(activation)
Remove legends, adding aesthetics to annotations in a modular fashion, using ComplexHeatmap
arguments
tidyHeatmap::pasilla |>
group_by(location, type) |>
heatmap(
.column = sample,
.row = symbol,
.value = `count normalised adjusted`,
scale = "row",
show_heatmap_legend = FALSE
) |>
add_tile(condition, show_legend = FALSE) |>
add_tile(activation, show_legend = FALSE)
Annotation types
“tile”, “point”, “bar” and “line” are available
# Create some more data points
pasilla_plus <-
tidyHeatmap::pasilla |>
dplyr::mutate(act = activation) |>
tidyr::nest(data = -sample) |>
dplyr::mutate(size = rnorm(n(), 4,0.5)) |>
dplyr::mutate(age = runif(n(), 50, 200)) |>
tidyr::unnest(data)
# Plot
pasilla_plus |>
heatmap(
.column = sample,
.row = symbol,
.value = `count normalised adjusted`,
scale = "row"
) |>
add_tile(condition) |>
add_point(activation) |>
add_tile(act) |>
add_bar(size) |>
add_line(age)
Annotation size
We can customise annotation sizes using the grid::unit()
, and the size of their names using in-built ComplexHeatmap
arguments
pasilla_plus |>
heatmap(
.column = sample,
.row = symbol,
.value = `count normalised adjusted`,
scale = "row"
) |>
add_tile(condition, size = unit(0.3, "cm"), annotation_name_gp= gpar(fontsize = 8)) |>
add_point(activation, size = unit(0.3, "cm"), annotation_name_gp= gpar(fontsize = 8)) |>
add_tile(act, size = unit(0.3, "cm"), annotation_name_gp= gpar(fontsize = 8)) |>
add_bar(size, size = unit(0.3, "cm"), annotation_name_gp= gpar(fontsize = 8)) |>
add_line(age, size = unit(0.3, "cm"), annotation_name_gp= gpar(fontsize = 8))
Layer symbol
Add a layer on top of the heatmap
tidyHeatmap::pasilla |>
# filter
filter(symbol %in% head(unique(tidyHeatmap::pasilla$symbol), n = 10)) |>
heatmap(
.column = sample,
.row = symbol,
.value = `count normalised adjusted`,
scale = "row"
) |>
layer_point(
`count normalised adjusted log` > 6 & sample == "untreated3"
)
Adding heatmap side-by-side
p_heatmap = heatmap(mtcars_tidy, `Car name`, Property, Value, scale = "row")
p_heatmap + p_heatmap
ComplexHeatmap further styling
Add cell borders
mtcars_tidy |>
heatmap(
`Car name`, Property, Value,
scale = "row",
rect_gp = grid::gpar(col = "#161616", lwd = 0.5)
)
Drop row clustering
mtcars_tidy |>
heatmap(
`Car name`, Property, Value,
scale = "row",
cluster_rows = FALSE
)
Reorder rows elements
library(forcats)
mtcars_tidy |>
mutate(`Car name` = fct_reorder(`Car name`, `Car name`, .desc = TRUE)) %>%
heatmap(
`Car name`, Property, Value,
scale = "row",
cluster_rows = FALSE
)
Size of dendrograms
mtcars_tidy |>
mutate(`Car name` = fct_reorder(`Car name`, `Car name`, .desc = TRUE)) %>%
heatmap(
`Car name`, Property, Value,
scale = "row",
column_dend_height = unit(0.2, "cm"),
row_dend_width = unit(0.2, "cm")
)
Size of rows/columns titles and names
mtcars_tidy |>
mutate(`Car name` = fct_reorder(`Car name`, `Car name`, .desc = TRUE)) %>%
heatmap(
`Car name`, Property, Value,
scale = "row",
row_names_gp = gpar(fontsize = 7),
column_names_gp = gpar(fontsize = 7),
column_title_gp = gpar(fontsize = 7),
row_title_gp = gpar(fontsize = 7)
)
External ComplexHeatmap
functionalities
ComplexHeatmap
has some graphical functionalities that are not included in the standard functional framework
Chainging side of legends
heatmap(mtcars_tidy, `Car name`, Property, Value, scale = "row" ) %>%
as_ComplexHeatmap() %>%
ComplexHeatmap::draw(heatmap_legend_side = "left" )
Using patchwork to integrate heatmaps
library(ggplot2)
library(patchwork)
p_heatmap =
mtcars_tidy |>
heatmap(
`Car name`, Property, Value,
scale = "row",
show_heatmap_legend = FALSE,
row_names_gp = gpar(fontsize = 7)
)
p_ggplot = tibble(value = 1:10) %>% ggplot(aes(value)) + geom_density()
wrap_heatmap(p_heatmap) +
p_ggplot +
wrap_heatmap(p_heatmap) +
plot_layout(width = c(1, 0.3, 1))