MyNixOS website logo
Description

Tidy Statistical Summaries for Exploratory Data Analysis.

Provides a tidy set of functions for summarising data, including descriptive statistics, frequency tables with normality testing, and group-wise significance testing. Designed for fast, readable, and easy exploration of both numeric and categorical data.

tidySummaries tidySummaries logo

tidyverse-friendly License:MIT Lifecycle:experimental CRANstatus Codecov testcoverage

Tidy statistical summaries made simple

tidySummaries provides a modern and extensible set of functions for descriptive statistics, frequency analysis, and significance testing — all with tidy output.

It’s ideal for both numeric and categorical exploratory data analysis, supporting group comparisons, normality checks, console coloring, and more.


Features

  • Tidy descriptive statistics
    summarise_statistics() computes mean, median, standard deviation, variance, skewness, kurtosis, IQR, MAD, and CV in a single tidy tibble.

  • Frequency tables
    summarise_frequency() summarizes categorical variables with frequency counts, proportions, or percentages.

  • Normality and group significance testing
    Automatically perform Shapiro-Wilk tests for normality, plus t-tests, Wilcoxon tests, ANOVA, or Kruskal-Wallis tests for group comparisons.

  • Grouped summaries
    summarise_group_stats() groups data by one or more variables and summarizes selected numeric columns flexibly.

  • Correlation analysis
    summarise_correlation() computes pairwise correlations (Pearson, Spearman, Kendall) and highlights significant results.

  • Boxplot statistics with outlier detection
    summarise_boxplot_stats() returns min, Q1, median, Q3, max, range, IQR, and detected outliers for numeric data.

  • Colored console output for significance
    Statistically significant results are automatically highlighted in red for easy identification.

  • Support for vectors, matrices, and data frames
    Functions handle vectors, matrices, tibbles, and grouped data frames smoothly.

  • Tidyverse-friendly design Pipeable and fully compatible with tidyverse workflows. All outputs are clean tibbles ready for further analysis or visualization.


Installation

You can install the development version from GitHub:

```r # install.packages(“devtools”) devtools::install_github(“kleanthisk10/tidySummaries”)

Metadata

Version

0.1.0

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows