'tidyverse' Methods for 'Earth Engine'.
tidyrgee
tidyrgee brings components of dplyr’s syntax to remote sensing analysis, using the rgee package.
rgee is an R-API for the Google Earth Engine (GEE) which provides R support to the methods/functions available in the JavaScript code editor and python API. The rgee
syntax was written to be very similar to the GEE Javascript/python. However, this syntax can feel unnatural and difficult at times especially to users with less experience in GEE. Simple concepts that are easy express verbally can be cumbersome even to advanced users (see Syntax Comparison). The tidyverse
has provided principals and concepts that help data scientists/R-users efficiently write and communicate there code in a clear and concise manner. tidyrgee
aims to bring these principals to GEE-remote sensing analyses.
tidyrgee provides the convenience of pipe-able dplyr style methods such as filter
, group_by
, summarise
, select
,mutate
,etc. using rlang’s style of non-standard evaluation (NSE)
try it out!
Installation
You can install the development version of tidyrgee from GitHub with:
# install.packages("devtools")
devtools::install_github("r-tidy-remote-sensing/tidyrgee")
It is important to note that to use tidyrgee you must be signed up for a GEE developer account. Additionally you must install the rgee package following there installation and setup instructions here
Syntax Comparison
Below is a quick example demonstrating the simplified syntax. Note that the rgee
syntax is very similar to the syntax in the Javascript code editor. In this example I want to simply calculate mean monthly NDVI (per pixel) for every year from 2000-2015. This is clearly a fairly simple analysis to verbalize/conceptualize. Yet, using using standard GEE conventions, the process is not so simple. Aside, from many peculiarities such as flattening
a list and then calling and then rebuilding the imageCollection
at the end, I also have to write and think about a double mapping statement using months and years (sort of like a double for-loop). By comparison the tidyrgee syntax removes the complexity and allows me to write the code in a more human readable/interpretable format.
rgee (similar to Javascript) | tidyrgee |
---|---|
|
|
Example usage
Below are a couple examples showing some of the available functions.
To load images/imageCollections you follow the standard approach using rgee
:
- load libraries
- initialize the GEE session
- load
ee$ImageCollection
/ee$Image
library(tidyrgee)
library(rgee)
ee_Initialize(quiet = T)
modis_ic <- ee$ImageCollection("MODIS/006/MOD13Q1")
Once the above steps are performed you can convert the ee$ImageCollection
to a tidyee
object with the function as_tidyee
. The tidyee object stores the original ee$ImageCollection
as ee_ob
(for earth engine object) and produces as virtual table/data.frame stored as vrt
. This vrt not only facilitates the use of dplyr/tidyverse methods, but also allows the user to better view the data stored in the accompanying imageCollection. The ee_ob
and vrt
inside the tidyee object are linked, any function applied to the tidyee object will apply to them both so that they remain in sync.
modis_tidy <- as_tidyee(modis_ic)
the vrt
comes with a few built in columns which you can use off the bat for filtering and grouping, but you can also mutate
additional info for filtering and grouping (i.e using lubridate
to create new temporal groupings)
knitr::kable(modis_tidy$vrt |> head())
id | time_start | system_index | date | month | year | doy | band_names |
---|---|---|---|---|---|---|---|
MODIS/006/MOD13Q1/2000_02_18 | 2000-02-18 | 2000_02_18 | 2000-02-18 | 2 | 2000 | 49 | NDVI , EVI , DetailedQA , sur_refl_b01 , sur_refl_b02 , sur_refl_b03 , sur_refl_b07 , ViewZenith , SolarZenith , RelativeAzimuth, DayOfYear , SummaryQA |
MODIS/006/MOD13Q1/2000_03_05 | 2000-03-05 | 2000_03_05 | 2000-03-05 | 3 | 2000 | 65 | NDVI , EVI , DetailedQA , sur_refl_b01 , sur_refl_b02 , sur_refl_b03 , sur_refl_b07 , ViewZenith , SolarZenith , RelativeAzimuth, DayOfYear , SummaryQA |
MODIS/006/MOD13Q1/2000_03_21 | 2000-03-21 | 2000_03_21 | 2000-03-21 | 3 | 2000 | 81 | NDVI , EVI , DetailedQA , sur_refl_b01 , sur_refl_b02 , sur_refl_b03 , sur_refl_b07 , ViewZenith , SolarZenith , RelativeAzimuth, DayOfYear , SummaryQA |
MODIS/006/MOD13Q1/2000_04_06 | 2000-04-06 | 2000_04_06 | 2000-04-06 | 4 | 2000 | 97 | NDVI , EVI , DetailedQA , sur_refl_b01 , sur_refl_b02 , sur_refl_b03 , sur_refl_b07 , ViewZenith , SolarZenith , RelativeAzimuth, DayOfYear , SummaryQA |
MODIS/006/MOD13Q1/2000_04_22 | 2000-04-22 | 2000_04_22 | 2000-04-22 | 4 | 2000 | 113 | NDVI , EVI , DetailedQA , sur_refl_b01 , sur_refl_b02 , sur_refl_b03 , sur_refl_b07 , ViewZenith , SolarZenith , RelativeAzimuth, DayOfYear , SummaryQA |
MODIS/006/MOD13Q1/2000_05_08 | 2000-05-08 | 2000_05_08 | 2000-05-08 | 5 | 2000 | 129 | NDVI , EVI , DetailedQA , sur_refl_b01 , sur_refl_b02 , sur_refl_b03 , sur_refl_b07 , ViewZenith , SolarZenith , RelativeAzimuth, DayOfYear , SummaryQA |
Next we demonstrate filtering by date, month, and year. The vrt
and ee_ob
are always filtered together
- by date
modis_tidy |>
filter(date>="2021-06-01")
#> band names: [ NDVI, EVI, DetailedQA, sur_refl_b01, sur_refl_b02, sur_refl_b03, sur_refl_b07, ViewZenith, SolarZenith, RelativeAzimuth, DayOfYear, SummaryQA ]
#>
#> $ee_ob
#> EarthEngine Object: ImageCollection
#> $vrt
#> # A tibble: 28 x 9
#> id time_start syste~1 date month year doy band_~2
#> <chr> <dttm> <chr> <date> <dbl> <dbl> <dbl> <list>
#> 1 MODIS/006/M~ 2021-06-10 00:00:00 2021_0~ 2021-06-10 6 2021 161 <chr>
#> 2 MODIS/006/M~ 2021-06-26 00:00:00 2021_0~ 2021-06-26 6 2021 177 <chr>
#> 3 MODIS/006/M~ 2021-07-12 00:00:00 2021_0~ 2021-07-12 7 2021 193 <chr>
#> 4 MODIS/006/M~ 2021-07-28 00:00:00 2021_0~ 2021-07-28 7 2021 209 <chr>
#> 5 MODIS/006/M~ 2021-08-13 00:00:00 2021_0~ 2021-08-13 8 2021 225 <chr>
#> 6 MODIS/006/M~ 2021-08-29 00:00:00 2021_0~ 2021-08-29 8 2021 241 <chr>
#> 7 MODIS/006/M~ 2021-09-14 00:00:00 2021_0~ 2021-09-14 9 2021 257 <chr>
#> 8 MODIS/006/M~ 2021-09-30 00:00:00 2021_0~ 2021-09-30 9 2021 273 <chr>
#> 9 MODIS/006/M~ 2021-10-16 00:00:00 2021_1~ 2021-10-16 10 2021 289 <chr>
#> 10 MODIS/006/M~ 2021-11-01 00:00:00 2021_1~ 2021-11-01 11 2021 305 <chr>
#> # ... with 18 more rows, 1 more variable: tidyee_index <chr>, and abbreviated
#> # variable names 1: system_index, 2: band_names
#> # i Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names
#>
#> attr(,"class")
#> [1] "tidyee"
- by year
modis_tidy |>
filter(year%in% 2010:2011)
#> band names: [ NDVI, EVI, DetailedQA, sur_refl_b01, sur_refl_b02, sur_refl_b03, sur_refl_b07, ViewZenith, SolarZenith, RelativeAzimuth, DayOfYear, SummaryQA ]
#>
#> $ee_ob
#> EarthEngine Object: ImageCollection
#> $vrt
#> # A tibble: 46 x 9
#> id time_start syste~1 date month year doy band_~2
#> <chr> <dttm> <chr> <date> <dbl> <dbl> <dbl> <list>
#> 1 MODIS/006/M~ 2010-01-01 00:00:00 2010_0~ 2010-01-01 1 2010 1 <chr>
#> 2 MODIS/006/M~ 2010-01-17 00:00:00 2010_0~ 2010-01-17 1 2010 17 <chr>
#> 3 MODIS/006/M~ 2010-02-02 00:00:00 2010_0~ 2010-02-02 2 2010 33 <chr>
#> 4 MODIS/006/M~ 2010-02-18 00:00:00 2010_0~ 2010-02-18 2 2010 49 <chr>
#> 5 MODIS/006/M~ 2010-03-06 00:00:00 2010_0~ 2010-03-06 3 2010 65 <chr>
#> 6 MODIS/006/M~ 2010-03-22 00:00:00 2010_0~ 2010-03-22 3 2010 81 <chr>
#> 7 MODIS/006/M~ 2010-04-07 00:00:00 2010_0~ 2010-04-07 4 2010 97 <chr>
#> 8 MODIS/006/M~ 2010-04-23 00:00:00 2010_0~ 2010-04-23 4 2010 113 <chr>
#> 9 MODIS/006/M~ 2010-05-09 00:00:00 2010_0~ 2010-05-09 5 2010 129 <chr>
#> 10 MODIS/006/M~ 2010-05-25 00:00:00 2010_0~ 2010-05-25 5 2010 145 <chr>
#> # ... with 36 more rows, 1 more variable: tidyee_index <chr>, and abbreviated
#> # variable names 1: system_index, 2: band_names
#> # i Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names
#>
#> attr(,"class")
#> [1] "tidyee"
- by month
modis_tidy |>
filter(month%in% c(7,8))
#> band names: [ NDVI, EVI, DetailedQA, sur_refl_b01, sur_refl_b02, sur_refl_b03, sur_refl_b07, ViewZenith, SolarZenith, RelativeAzimuth, DayOfYear, SummaryQA ]
#>
#> $ee_ob
#> EarthEngine Object: ImageCollection
#> $vrt
#> # A tibble: 91 x 9
#> id time_start syste~1 date month year doy band_~2
#> <chr> <dttm> <chr> <date> <dbl> <dbl> <dbl> <list>
#> 1 MODIS/006/M~ 2000-07-11 00:00:00 2000_0~ 2000-07-11 7 2000 193 <chr>
#> 2 MODIS/006/M~ 2000-07-27 00:00:00 2000_0~ 2000-07-27 7 2000 209 <chr>
#> 3 MODIS/006/M~ 2000-08-12 00:00:00 2000_0~ 2000-08-12 8 2000 225 <chr>
#> 4 MODIS/006/M~ 2000-08-28 00:00:00 2000_0~ 2000-08-28 8 2000 241 <chr>
#> 5 MODIS/006/M~ 2001-07-12 00:00:00 2001_0~ 2001-07-12 7 2001 193 <chr>
#> 6 MODIS/006/M~ 2001-07-28 00:00:00 2001_0~ 2001-07-28 7 2001 209 <chr>
#> 7 MODIS/006/M~ 2001-08-13 00:00:00 2001_0~ 2001-08-13 8 2001 225 <chr>
#> 8 MODIS/006/M~ 2001-08-29 00:00:00 2001_0~ 2001-08-29 8 2001 241 <chr>
#> 9 MODIS/006/M~ 2002-07-12 00:00:00 2002_0~ 2002-07-12 7 2002 193 <chr>
#> 10 MODIS/006/M~ 2002-07-28 00:00:00 2002_0~ 2002-07-28 7 2002 209 <chr>
#> # ... with 81 more rows, 1 more variable: tidyee_index <chr>, and abbreviated
#> # variable names 1: system_index, 2: band_names
#> # i Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names
#>
#> attr(,"class")
#> [1] "tidyee"
Putting a dplyr-like chain together:
In this next example we pipe together multiple functions (select
, filter
, group_by
, summarise
) to
- select the
NDVI
band from the ImageCollection - filter the imageCollection to a desired date range
- group the filtered ImageCollection by month
- summarizing each pixel by year and month.
The result will be an ImageCollection
with the one Image
per month (12 images) where each pixel in each image represents the average NDVI value for that month calculated using monthly data from 2000 2015.
modis_tidy |>
select("NDVI") |>
filter(year %in% 2000:2015) |>
group_by(month) |>
summarise(stat= "mean")
#> band names: [ NDVI_mean ]
#>
#> $ee_ob
#> EarthEngine Object: ImageCollection
#> $vrt
#> # A tibble: 12 x 7
#> month dates_summ~1 numbe~2 time_start time_end date
#> <dbl> <list> <int> <dttm> <dttm> <date>
#> 1 1 <dttm [30]> 30 2001-01-01 00:00:00 2001-01-01 00:00:00 2001-01-01
#> 2 2 <dttm [31]> 31 2000-02-18 00:00:00 2000-02-18 00:00:00 2000-02-18
#> 3 3 <dttm [32]> 32 2000-03-05 00:00:00 2000-03-05 00:00:00 2000-03-05
#> 4 4 <dttm [32]> 32 2000-04-06 00:00:00 2000-04-06 00:00:00 2000-04-06
#> 5 5 <dttm [32]> 32 2000-05-08 00:00:00 2000-05-08 00:00:00 2000-05-08
#> 6 6 <dttm [32]> 32 2000-06-09 00:00:00 2000-06-09 00:00:00 2000-06-09
#> 7 7 <dttm [32]> 32 2000-07-11 00:00:00 2000-07-11 00:00:00 2000-07-11
#> 8 8 <dttm [32]> 32 2000-08-12 00:00:00 2000-08-12 00:00:00 2000-08-12
#> 9 9 <dttm [32]> 32 2000-09-13 00:00:00 2000-09-13 00:00:00 2000-09-13
#> 10 10 <dttm [20]> 20 2000-10-15 00:00:00 2000-10-15 00:00:00 2000-10-15
#> 11 11 <dttm [28]> 28 2000-11-16 00:00:00 2000-11-16 00:00:00 2000-11-16
#> 12 12 <dttm [32]> 32 2000-12-02 00:00:00 2000-12-02 00:00:00 2000-12-02
#> # ... with 1 more variable: band_names <list>, and abbreviated variable names
#> # 1: dates_summarised, 2: number_images
#> # i Use `colnames()` to see all variable names
#>
#> attr(,"class")
#> [1] "tidyee"
You can easily group_by
more than 1 property to calculate different summary stats. Below we
- filter to only data from 2021-2022
- group by year, month and calculate the median NDVI pixel value
As we are using the MODIS 16-day composite we summarising approximately 2 images per month to create median composite image fo reach month in the specified years. The vrt
holds a list-col
containing all the dates summarised per new composite image.
modis_tidy |>
select("NDVI") |>
filter(year %in% 2021:2022) |>
group_by(year,month) |>
summarise(stat= "median")
#> band names: [ NDVI_median ]
#>
#> $ee_ob
#> EarthEngine Object: ImageCollection
#> $vrt
#> # A tibble: 20 x 8
#> year month dates_summarised number~1 time_start time_end
#> <dbl> <dbl> <list> <int> <dttm> <dttm>
#> 1 2021 1 <dttm [2]> 2 2021-01-01 00:00:00 2021-01-01 00:00:00
#> 2 2021 2 <dttm [2]> 2 2021-02-02 00:00:00 2021-02-02 00:00:00
#> 3 2021 3 <dttm [2]> 2 2021-03-06 00:00:00 2021-03-06 00:00:00
#> 4 2021 4 <dttm [2]> 2 2021-04-07 00:00:00 2021-04-07 00:00:00
#> 5 2021 5 <dttm [2]> 2 2021-05-09 00:00:00 2021-05-09 00:00:00
#> 6 2021 6 <dttm [2]> 2 2021-06-10 00:00:00 2021-06-10 00:00:00
#> 7 2021 7 <dttm [2]> 2 2021-07-12 00:00:00 2021-07-12 00:00:00
#> 8 2021 8 <dttm [2]> 2 2021-08-13 00:00:00 2021-08-13 00:00:00
#> 9 2021 9 <dttm [2]> 2 2021-09-14 00:00:00 2021-09-14 00:00:00
#> 10 2021 10 <dttm [1]> 1 2021-10-16 00:00:00 2021-10-16 00:00:00
#> 11 2021 11 <dttm [2]> 2 2021-11-01 00:00:00 2021-11-01 00:00:00
#> 12 2021 12 <dttm [2]> 2 2021-12-03 00:00:00 2021-12-03 00:00:00
#> 13 2022 1 <dttm [2]> 2 2022-01-01 00:00:00 2022-01-01 00:00:00
#> 14 2022 2 <dttm [2]> 2 2022-02-02 00:00:00 2022-02-02 00:00:00
#> 15 2022 3 <dttm [2]> 2 2022-03-06 00:00:00 2022-03-06 00:00:00
#> 16 2022 4 <dttm [2]> 2 2022-04-07 00:00:00 2022-04-07 00:00:00
#> 17 2022 5 <dttm [2]> 2 2022-05-09 00:00:00 2022-05-09 00:00:00
#> 18 2022 6 <dttm [2]> 2 2022-06-10 00:00:00 2022-06-10 00:00:00
#> 19 2022 7 <dttm [2]> 2 2022-07-12 00:00:00 2022-07-12 00:00:00
#> 20 2022 8 <dttm [1]> 1 2022-08-13 00:00:00 2022-08-13 00:00:00
#> # ... with 2 more variables: date <date>, band_names <list>, and abbreviated
#> # variable name 1: number_images
#> # i Use `colnames()` to see all variable names
#>
#> attr(,"class")
#> [1] "tidyee"
To improve interoperability with rgee
we have included the as_ee
function to return the tidyee
object back to rgee
classes when necessary
modis_ic <- modis_tidy |> as_ee()