MyNixOS website logo
Description

Utilities to Retrieve Rulelists from Model Fits, Filter, Prune, Reorder and Predict on Unseen Data.

Provides a framework to work with decision rules. Rules can be extracted from supported models, augmented with (custom) metrics using validation data, manipulated using standard dataframe operations, reordered and pruned based on a metric, predict on unseen (test) data. Utilities include; Creating a rulelist manually, Exporting a rulelist as a SQL case statement and so on. The package offers two classes; rulelist and ruleset based on dataframe.

tidyrules

CRAN_Status_Badge

tidyrulesRpackage provides a framework to work with decision rules. Rules can be extracted from supported models, augmented with (custom) metrics using validation data, manipulated using standard dataframe operations, reordered and pruned based on a metric, predict on unseen (test) data. Utilities include; Creating a rulelist manually, Exporting a rulelist as a SQL case statement and so on. The package offers two classes; rulelist and ruleset based on dataframe.

website: https://talegari.github.io/tidyrules/

Example

expand/collapse
library(tidyrules)
model_c5 = C50::C5.0(Species ~ ., data = iris, rules = TRUE)
pander::pandoc.table(tidy(model_c5), split.tables = 120)
#> 
#> ----------------------------------------------------------------------------------------------
#>  rule_nbr   trial_nbr              LHS                  RHS       support   confidence   lift 
#> ---------- ----------- ---------------------------- ------------ --------- ------------ ------
#>     1           1        ( Petal.Length <= 1.9 )       setosa       50        0.9808     2.9  
#> 
#>     2           1       ( Petal.Length > 1.9 ) & (   versicolor     48         0.96      2.9  
#>                         Petal.Length <= 4.9 ) & (                                             
#>                            Petal.Width <= 1.7 )                                               
#> 
#>     3           1         ( Petal.Width > 1.7 )      virginica      46        0.9583     2.9  
#> 
#>     4           1         ( Petal.Length > 4.9 )     virginica      46        0.9375     2.8  
#> ----------------------------------------------------------------------------------------------

Installation

expand/collapse

You can install the released version of tidyrules from CRAN with:

install.packages("tidyrules")

And the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("talegari/tidyrules")
Metadata

Version

0.2.7

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows