MyNixOS website logo
Description

Diagnostic Graphics to Evaluate Forecast Performance.

Overall predictive performance is measured by a mean score (or loss), which decomposes into miscalibration, discrimination, and uncertainty components. The main focus is visualization of these distinct and complementary aspects in joint displays. See Dimitriadis, Gneiting, Jordan, Vogel (2024) <doi:10.1016/j.ijforecast.2023.09.007>.

triptych : Diagnostic Graphics to Evaluate Forecast Performance

CRANstatus R-CMD-check

Overall predictive performance is measured by a mean score (or loss), which decomposes into miscalibration, discrimination, and uncertainty components. The main focus is visualization of these distinct and complementary aspects in joint displays. See Dimitriadis, Gneiting, Jordan, Vogel (2024) doi:10.1016/j.ijforecast.2023.09.007.

Installation

Install the latest release of triptych from CRAN with:

install.packages("triptych")

Install the development version of triptych with:

# install.packages("devtools")
devtools::install_github("aijordan/triptych")

Example

library(triptych)
data(ex_binary, package = "triptych")
set.seed(20230921)

tr <- triptych(ex_binary)
tr
#> # A tibble: 10 × 5
#>    forecast          murphy     reliability             roc          mcbdsc
#>    <chr>         <trpt_mur>      <trpt_rel>      <trpt_roc>   <trpt_mcbdsc>
#>  1 X01      <named list[3]> <named list[3]> <named list[3]> <named list[3]>
#>  2 X02      <named list[3]> <named list[3]> <named list[3]> <named list[3]>
#>  3 X03      <named list[3]> <named list[3]> <named list[3]> <named list[3]>
#>  4 X04      <named list[3]> <named list[3]> <named list[3]> <named list[3]>
#>  5 X05      <named list[3]> <named list[3]> <named list[3]> <named list[3]>
#>  6 X06      <named list[3]> <named list[3]> <named list[3]> <named list[3]>
#>  7 X07      <named list[3]> <named list[3]> <named list[3]> <named list[3]>
#>  8 X08      <named list[3]> <named list[3]> <named list[3]> <named list[3]>
#>  9 X09      <named list[3]> <named list[3]> <named list[3]> <named list[3]>
#> 10 X10      <named list[3]> <named list[3]> <named list[3]> <named list[3]>

# 1. Choose 4 predictions
# 2. Add consistency bands (for reliability curves)
# 3. Create patchwork object
# 4. Adjust the title of the legend
dplyr::slice(tr, 1, 3, 6, 9) |>
  add_consistency(level = 0.9, n_boot = 100) |>
  autoplot() &
  ggplot2::guides(colour = ggplot2::guide_legend("Forecast"))
# From existing triptych object
estimates(tr$mcbdsc)
#> # A tibble: 10 × 5
#>    forecast mean_score     MCB    DSC   UNC
#>    <chr>         <dbl>   <dbl>  <dbl> <dbl>
#>  1 X01          0.0827 0.00474 0.172  0.250
#>  2 X02          0.127  0.0233  0.146  0.250
#>  3 X03          0.134  0.0172  0.132  0.250
#>  4 X04          0.194  0.0587  0.114  0.250
#>  5 X05          0.222  0.0723  0.100  0.250
#>  6 X06          0.180  0.00494 0.0748 0.250
#>  7 X07          0.212  0.0211  0.0590 0.250
#>  8 X08          0.235  0.0263  0.0410 0.250
#>  9 X09          0.303  0.0818  0.0282 0.250
#> 10 X10          0.312  0.0772  0.0148 0.250
autoplot(tr$mcbdsc)

# Or standalone:
# mcbdsc(ex_binary) |> estimates()
# mcbdsc(ex_binary) |> autoplot()
Metadata

Version

0.1.3

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows