MyNixOS website logo
Description

Time Series Feature Extraction.

Methods for extracting various features from time series data. The features provided are those from Hyndman, Wang and Laptev (2013) <doi:10.1109/ICDMW.2015.104>, Kang, Hyndman and Smith-Miles (2017) <doi:10.1016/j.ijforecast.2016.09.004> and from Fulcher, Little and Jones (2013) <doi:10.1098/rsif.2013.0048>. Features include spectral entropy, autocorrelations, measures of the strength of seasonality and trend, and so on. Users can also define their own feature functions.

tsfeatures

CRAN_Status_Badge Downloads Licence R buildstatus

The R package tsfeatures provides methods for extracting various features from time series data.

Installation

You can install the stable version on R CRAN.

install.packages('tsfeatures', dependencies = TRUE)

You can install the development version from Github with:

# install.packages("devtools")
devtools::install_github("robjhyndman/tsfeatures")

Usage

library(tsfeatures)
mylist <- list(sunspot.year, WWWusage, AirPassengers, USAccDeaths)
myfeatures <- tsfeatures(mylist)
myfeatures
#> # A tibble: 4 × 20
#>   frequency nperiods seasonal_period trend      spike linearity curvature e_acf1
#>       <dbl>    <dbl>           <dbl> <dbl>      <dbl>     <dbl>     <dbl>  <dbl>
#> 1         1        0               1 0.125    2.10e-5      3.58      1.11  0.793
#> 2         1        0               1 0.985    3.01e-8      4.45      1.10  0.774
#> 3        12        1              12 0.991    1.46e-8     11.0       1.09  0.509
#> 4        12        1              12 0.802    9.15e-7     -2.12      2.85  0.258
#> # ℹ 12 more variables: e_acf10 <dbl>, entropy <dbl>, x_acf1 <dbl>,
#> #   x_acf10 <dbl>, diff1_acf1 <dbl>, diff1_acf10 <dbl>, diff2_acf1 <dbl>,
#> #   diff2_acf10 <dbl>, seasonal_strength <dbl>, peak <dbl>, trough <dbl>,
#> #   seas_acf1 <dbl>

License

This package is free and open source software, licensed under GPL-3.

Metadata

Version

1.1.1

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows